|
| 1 | +import builtins |
| 2 | +import logging |
| 3 | +from collections.abc import Callable |
| 4 | +from functools import partial |
| 5 | +from typing import Any |
| 6 | + |
| 7 | +from typing_extensions import TypedDict, Unpack |
| 8 | + |
| 9 | +import mcp.types as types |
| 10 | +from mcp.server.lowlevel.server import CombinationContent, Server |
| 11 | +from mcp.server.minimcp.exceptions import ( |
| 12 | + InvalidArgumentsError, |
| 13 | + MCPRuntimeError, |
| 14 | + PrimitiveError, |
| 15 | + ToolInvalidArgumentsError, |
| 16 | + ToolMCPRuntimeError, |
| 17 | + ToolPrimitiveError, |
| 18 | +) |
| 19 | +from mcp.server.minimcp.utils.mcp_func import MCPFunc |
| 20 | + |
| 21 | +logger = logging.getLogger(__name__) |
| 22 | + |
| 23 | + |
| 24 | +class ToolDefinition(TypedDict, total=False): |
| 25 | + """ |
| 26 | + Type definition for tool parameters. |
| 27 | +
|
| 28 | + Attributes: |
| 29 | + name: Optional unique identifier for the tool. If not provided, the function name is used. |
| 30 | + Must be unique across all tools in the server. |
| 31 | + title: Optional human-readable name for display purposes. Shows in client UIs to help users |
| 32 | + understand which tools are being exposed to the AI model. |
| 33 | + description: Optional human-readable description of tool functionality. If not provided, |
| 34 | + the function's docstring is used. |
| 35 | + annotations: Optional annotations describing tool behavior. For trust & safety, clients must |
| 36 | + consider annotations untrusted unless from trusted servers. |
| 37 | + meta: Optional metadata dictionary for additional tool information. |
| 38 | + """ |
| 39 | + |
| 40 | + name: str | None |
| 41 | + title: str | None |
| 42 | + description: str | None |
| 43 | + annotations: types.ToolAnnotations | None |
| 44 | + meta: dict[str, Any] | None |
| 45 | + |
| 46 | + |
| 47 | +class ToolManager: |
| 48 | + """ |
| 49 | + ToolManager is responsible for registration and execution of MCP tool handlers. |
| 50 | +
|
| 51 | + The Model Context Protocol (MCP) allows servers to expose tools that can be invoked by language |
| 52 | + models. Tools enable models to interact with external systems, such as querying databases, calling |
| 53 | + APIs, or performing computations. Each tool is uniquely identified by a name and includes metadata |
| 54 | + describing its schema. |
| 55 | +
|
| 56 | + The ToolManager can be used as a decorator (@mcp.tool()) or programmatically via the mcp.tool.add(), |
| 57 | + mcp.tool.list(), mcp.tool.call() and mcp.tool.remove() methods. |
| 58 | +
|
| 59 | + When a tool handler is added, its name and description are automatically inferred from the handler |
| 60 | + function. You can override these by passing explicit parameters. The inputSchema and outputSchema |
| 61 | + are automatically generated from function type annotations. Tools support both structured and |
| 62 | + unstructured content in results. |
| 63 | +
|
| 64 | + Tool results can contain multiple content types (text, image, audio, resource links, embedded |
| 65 | + resources) and support optional annotations. All content types support annotations for metadata |
| 66 | + about audience, priority, and modification times. |
| 67 | +
|
| 68 | + For more details, see: https://modelcontextprotocol.io/specification/2025-06-18/server/tools |
| 69 | +
|
| 70 | + Example: |
| 71 | + @mcp.tool() |
| 72 | + def get_weather(location: str) -> str: |
| 73 | + '''Get current weather information for a location''' |
| 74 | + return f"Weather in {location}: 72°F, Partly cloudy" |
| 75 | +
|
| 76 | + # With display title and annotations |
| 77 | + @mcp.tool(title="Weather Information Provider", annotations={"priority": 0.9}) |
| 78 | + def get_weather(location: str) -> dict: |
| 79 | + '''Get current weather data for a location''' |
| 80 | + return {"temperature": 72, "conditions": "Partly cloudy"} |
| 81 | +
|
| 82 | + # Or programmatically: |
| 83 | + mcp.tool.add(get_weather, title="Weather Provider") |
| 84 | + """ |
| 85 | + |
| 86 | + _tools: dict[str, tuple[types.Tool, MCPFunc]] |
| 87 | + |
| 88 | + def __init__(self, core: Server): |
| 89 | + """ |
| 90 | + Args: |
| 91 | + core: The low-level MCP Server instance to hook into. |
| 92 | + """ |
| 93 | + self._tools = {} |
| 94 | + self._hook_core(core) |
| 95 | + |
| 96 | + def _hook_core(self, core: Server) -> None: |
| 97 | + """Register tool handlers with the MCP core server. |
| 98 | +
|
| 99 | + Args: |
| 100 | + core: The low-level MCP Server instance to hook into. |
| 101 | + """ |
| 102 | + core.list_tools()(self._async_list) |
| 103 | + |
| 104 | + # Validation done by func_meta in call. Hence passing validate_input=False |
| 105 | + # TODO: Ensure only one validation is required |
| 106 | + core.call_tool(validate_input=False)(self._call) |
| 107 | + |
| 108 | + def __call__(self, **kwargs: Unpack[ToolDefinition]) -> Callable[[types.AnyFunction], types.Tool]: |
| 109 | + """Decorator to add/register a tool handler at the time of handler function definition. |
| 110 | +
|
| 111 | + Tool name and description are automatically inferred from the handler function. You can override |
| 112 | + these by passing explicit parameters (name, title, description, annotations, meta). The inputSchema |
| 113 | + and outputSchema are automatically generated from function type annotations. |
| 114 | +
|
| 115 | + Args: |
| 116 | + **kwargs: Optional tool definition parameters (name, title, description, annotations, meta). |
| 117 | + Parameters are defined in the ToolDefinition class. |
| 118 | +
|
| 119 | + Returns: |
| 120 | + A decorator function that adds the tool handler. |
| 121 | +
|
| 122 | + Example: |
| 123 | + @mcp.tool(title="Weather Information Provider") |
| 124 | + def get_weather(location: str) -> dict: |
| 125 | + return {"temperature": 72, "conditions": "Partly cloudy"} |
| 126 | + """ |
| 127 | + return partial(self.add, **kwargs) |
| 128 | + |
| 129 | + def add(self, func: types.AnyFunction, **kwargs: Unpack[ToolDefinition]) -> types.Tool: |
| 130 | + """To programmatically add/register a tool handler function. |
| 131 | +
|
| 132 | + This is useful when the handler function is already defined and you have a function object |
| 133 | + that needs to be registered at runtime. |
| 134 | +
|
| 135 | + If not provided, the tool name (unique identifier) and description are automatically inferred |
| 136 | + from the function's name and docstring. The title field should be provided for better display |
| 137 | + in client UIs. The inputSchema and outputSchema are automatically generated from function type |
| 138 | + annotations using Pydantic models for validation. |
| 139 | +
|
| 140 | + Handler functions can return various content types: |
| 141 | + - Unstructured content: str, bytes, list of content blocks |
| 142 | + - Structured content: dict (returned in structuredContent field) |
| 143 | + - Combination: tuple of (unstructured, structured) |
| 144 | +
|
| 145 | + Tool results support multiple content types per MCP specification: |
| 146 | + - Text content (type: "text") |
| 147 | + - Image content (type: "image") - base64-encoded |
| 148 | + - Audio content (type: "audio") - base64-encoded |
| 149 | + - Resource links (type: "resource_link") |
| 150 | + - Embedded resources (type: "resource") |
| 151 | +
|
| 152 | + Args: |
| 153 | + func: The tool handler function. Can be synchronous or asynchronous. Should return |
| 154 | + content that can be converted to tool result format. |
| 155 | + **kwargs: Optional tool definition parameters to override inferred values |
| 156 | + (name, title, description, annotations, meta). Parameters are defined in |
| 157 | + the ToolDefinition class. |
| 158 | +
|
| 159 | + Returns: |
| 160 | + The registered Tool object with unique identifier, inputSchema, optional outputSchema, |
| 161 | + and optional annotations. |
| 162 | +
|
| 163 | + Raises: |
| 164 | + PrimitiveError: If a tool with the same name is already registered |
| 165 | + MCPFuncError: If the function cannot be used as a MCP handler function |
| 166 | + """ |
| 167 | + |
| 168 | + tool_func = MCPFunc(func, kwargs.get("name")) |
| 169 | + if tool_func.name in self._tools: |
| 170 | + raise PrimitiveError(f"Tool {tool_func.name} already registered") |
| 171 | + |
| 172 | + tool = types.Tool( |
| 173 | + name=tool_func.name, |
| 174 | + title=kwargs.get("title", None), |
| 175 | + description=kwargs.get("description", tool_func.doc), |
| 176 | + inputSchema=tool_func.input_schema, |
| 177 | + outputSchema=tool_func.output_schema, |
| 178 | + annotations=kwargs.get("annotations", None), |
| 179 | + _meta=kwargs.get("meta", None), |
| 180 | + ) |
| 181 | + |
| 182 | + self._tools[tool_func.name] = (tool, tool_func) |
| 183 | + logger.debug("Tool %s added", tool_func.name) |
| 184 | + |
| 185 | + return tool |
| 186 | + |
| 187 | + def remove(self, name: str) -> types.Tool: |
| 188 | + """Remove a tool by name. |
| 189 | +
|
| 190 | + Args: |
| 191 | + name: The name of the tool to remove. |
| 192 | +
|
| 193 | + Returns: |
| 194 | + The removed Tool object. |
| 195 | +
|
| 196 | + Raises: |
| 197 | + PrimitiveError: If the tool is not found. |
| 198 | + """ |
| 199 | + if name not in self._tools: |
| 200 | + # Raise INVALID_PARAMS as per MCP specification |
| 201 | + raise PrimitiveError(f"Unknown tool: {name}") |
| 202 | + |
| 203 | + logger.debug("Removing tool %s", name) |
| 204 | + return self._tools.pop(name)[0] |
| 205 | + |
| 206 | + async def _async_list(self) -> builtins.list[types.Tool]: |
| 207 | + """Async wrapper for list(). |
| 208 | +
|
| 209 | + Returns: |
| 210 | + A list of all registered Tool objects. |
| 211 | + """ |
| 212 | + return self.list() |
| 213 | + |
| 214 | + def list(self) -> builtins.list[types.Tool]: |
| 215 | + """List all registered tools. |
| 216 | +
|
| 217 | + Returns: |
| 218 | + A list of all registered Tool objects. |
| 219 | + """ |
| 220 | + return [tool[0] for tool in self._tools.values()] |
| 221 | + |
| 222 | + async def _call(self, name: str, args: dict[str, Any]) -> CombinationContent: |
| 223 | + """Execute a tool by name, as specified in the MCP tools/call protocol. |
| 224 | +
|
| 225 | + This method handles the MCP tools/call request, executing the tool handler function with |
| 226 | + the provided arguments. Arguments are validated against the tool's inputSchema, and the |
| 227 | + result is converted to the appropriate tool result format per the MCP specification. |
| 228 | +
|
| 229 | + Tools use two error reporting mechanisms per the spec: |
| 230 | + 1. Protocol Errors: Raised as a ToolPrimitiveError, ToolInvalidArgumentsError or ToolMCPRuntimeErrors |
| 231 | + 2. Tool Execution Errors: Returned in result with isError=true (handled by lowlevel server) |
| 232 | +
|
| 233 | + Errors raised are of SpecialToolErrors type. SpecialToolErrors inherit from BaseException (not Exception) |
| 234 | + to bypass the low-level server's default exception handler during tool execution. This allows |
| 235 | + the tool manager to implement custom error handling and response formatting. |
| 236 | +
|
| 237 | + The result can contain: |
| 238 | + - Unstructured content: Array of content blocks (text, image, audio, resource links, embedded resources) |
| 239 | + - Structured content: JSON object (if outputSchema is defined) |
| 240 | + - Combination: Both unstructured and structured content |
| 241 | +
|
| 242 | + Args: |
| 243 | + name: The unique identifier of the tool to call. |
| 244 | + args: Dictionary of arguments to pass to the tool handler. Must conform to the |
| 245 | + tool's inputSchema. Arguments are validated by MCPFunc. |
| 246 | +
|
| 247 | + Returns: |
| 248 | + CombinationContent containing either unstructured content, structured content, or both, |
| 249 | + per the MCP protocol. |
| 250 | +
|
| 251 | + Raises: |
| 252 | + ToolPrimitiveError: If the tool is not found (maps to -32602 Invalid params per spec). |
| 253 | + ToolInvalidArgumentsError: If the tool arguments are invalid. |
| 254 | + ToolMCPRuntimeError: If an error occurs during tool execution (maps to -32603 Internal error). |
| 255 | + Note: Tool execution errors (API failures, invalid input data, business logic errors) |
| 256 | + are handled by the lowlevel server and returned with isError=true. |
| 257 | + """ |
| 258 | + if name not in self._tools: |
| 259 | + # Raise INVALID_PARAMS as per MCP specification |
| 260 | + raise ToolPrimitiveError(f"Unknown tool: {name}") |
| 261 | + |
| 262 | + tool_func = self._tools[name][1] |
| 263 | + |
| 264 | + try: |
| 265 | + # Exceptions on execution are captured by the core and returned as part of CallToolResult. |
| 266 | + result = await tool_func.execute(args) |
| 267 | + logger.debug("Tool %s handled with args %s", name, args) |
| 268 | + except InvalidArgumentsError as e: |
| 269 | + raise ToolInvalidArgumentsError(str(e)) from e |
| 270 | + |
| 271 | + try: |
| 272 | + return tool_func.meta.convert_result(result) |
| 273 | + except Exception as e: |
| 274 | + msg = f"Error calling tool {name}: {e}" |
| 275 | + logger.exception(msg) |
| 276 | + raise ToolMCPRuntimeError(msg) from e |
| 277 | + |
| 278 | + async def call(self, name: str, args: dict[str, Any]) -> CombinationContent: |
| 279 | + """ |
| 280 | + Wrapper for _call so that the tools can be called manually by the user. It converts |
| 281 | + the SpecialToolErrors to the appropriate MiniMCPError. |
| 282 | +
|
| 283 | + SpecialToolErrors inherit from BaseException (not Exception) to bypass the low-level |
| 284 | + server's default exception handler during tool execution. This allows the tool manager |
| 285 | + to implement custom error handling and response formatting. |
| 286 | +
|
| 287 | + Args: |
| 288 | + name: The unique identifier of the tool to call. |
| 289 | + args: Dictionary of arguments to pass to the tool handler. Must conform to the |
| 290 | + tool's inputSchema. Arguments are validated by MCPFunc. |
| 291 | +
|
| 292 | + Returns: |
| 293 | + CombinationContent containing either unstructured content, structured content, or both, |
| 294 | + per the MCP protocol. |
| 295 | +
|
| 296 | + Raises: |
| 297 | + PrimitiveError: If the tool is not found. |
| 298 | + InvalidArgumentsError: If the tool arguments are invalid. |
| 299 | + MCPRuntimeError: If an error occurs during tool execution. |
| 300 | + """ |
| 301 | + |
| 302 | + try: |
| 303 | + return await self._call(name, args) |
| 304 | + except ToolPrimitiveError as e: |
| 305 | + raise PrimitiveError(str(e)) from e |
| 306 | + except ToolInvalidArgumentsError as e: |
| 307 | + raise InvalidArgumentsError(str(e)) from e |
| 308 | + except ToolMCPRuntimeError as e: |
| 309 | + raise MCPRuntimeError(str(e)) from e |
0 commit comments