@@ -1538,22 +1538,64 @@ def idxmax(self, skipna: bool = True) -> Series:
15381538 """
15391539 return self ._idxmax_idxmin ("idxmax" , skipna = skipna )
15401540
1541- @doc (Series .corr .__doc__ )
15421541 def corr (
15431542 self ,
15441543 other : Series ,
15451544 method : CorrelationMethod = "pearson" ,
15461545 min_periods : int | None = None ,
15471546 ) -> Series :
1547+ """
1548+ Compute correlation between each group and another Series.
1549+
1550+ Parameters
1551+ ----------
1552+ other : Series
1553+ Series to compute correlation with.
1554+ method : {'pearson', 'kendall', 'spearman'}, default 'pearson'
1555+ Method of correlation to use.
1556+ min_periods : int, optional
1557+ Minimum number of observations required per pair of columns to
1558+ have a valid result.
1559+
1560+ Returns
1561+ -------
1562+ Series
1563+ Correlation value for each group.
1564+
1565+ See Also
1566+ --------
1567+ Series.corr : Equivalent method on ``Series``.
1568+ """
15481569 result = self ._op_via_apply (
15491570 "corr" , other = other , method = method , min_periods = min_periods
15501571 )
15511572 return result
15521573
1553- @doc (Series .cov .__doc__ )
15541574 def cov (
15551575 self , other : Series , min_periods : int | None = None , ddof : int | None = 1
15561576 ) -> Series :
1577+ """
1578+ Compute covariance between each group and another Series.
1579+
1580+ Parameters
1581+ ----------
1582+ other : Series
1583+ Series to compute covariance with.
1584+ min_periods : int, optional
1585+ Minimum number of observations required per pair of columns to
1586+ have a valid result.
1587+ ddof : int, optional
1588+ Delta degrees of freedom for variance calculation.
1589+
1590+ Returns
1591+ -------
1592+ Series
1593+ Covariance value for each group.
1594+
1595+ See Also
1596+ --------
1597+ Series.cov : Equivalent method on ``Series``.
1598+ """
15571599 result = self ._op_via_apply (
15581600 "cov" , other = other , min_periods = min_periods , ddof = ddof
15591601 )
@@ -1607,7 +1649,6 @@ def is_monotonic_decreasing(self) -> Series:
16071649 """
16081650 return self .apply (lambda ser : ser .is_monotonic_decreasing )
16091651
1610- @doc (Series .hist .__doc__ )
16111652 def hist (
16121653 self ,
16131654 by = None ,
@@ -1623,6 +1664,24 @@ def hist(
16231664 legend : bool = False ,
16241665 ** kwargs ,
16251666 ):
1667+ """
1668+ Draw histogram for each group's values using :meth:`Series.hist` API.
1669+
1670+ Parameters
1671+ ----------
1672+ by, ax, grid, xlabelsize, xrot, ylabelsize, yrot, figsize, bins, backend,
1673+ legend, **kwargs
1674+ See :meth:`Series.hist` for full parameter descriptions.
1675+
1676+ Returns
1677+ -------
1678+ matplotlib.axes.Axes or ndarray of Axes
1679+ The returned matplotlib axes or array of axes depending on input.
1680+
1681+ See Also
1682+ --------
1683+ Series.hist : Equivalent histogram plotting method on Series.
1684+ """
16261685 result = self ._op_via_apply (
16271686 "hist" ,
16281687 by = by ,
@@ -1641,8 +1700,17 @@ def hist(
16411700 return result
16421701
16431702 @property
1644- @doc (Series .dtype .__doc__ )
16451703 def dtype (self ) -> Series :
1704+ """
1705+ Return the dtype object of the underlying data for each group.
1706+
1707+ Mirrors :meth:`Series.dtype` applied group-wise.
1708+
1709+ Returns
1710+ -------
1711+ Series
1712+ Dtype of each group's values.
1713+ """
16461714 return self .apply (lambda ser : ser .dtype )
16471715
16481716 def unique (self ) -> Series :
0 commit comments