@@ -668,8 +668,9 @@ column, which produces an aggregated result with a hierarchical column index:
668668 grouped[[" C" , " D" ]].agg([" sum" , " mean" , " std" ])
669669
670670
671- The resulting aggregations are named after the functions themselves. If you
672- need to rename, then you can add in a chained operation for a ``Series `` like this:
671+ The resulting aggregations are named after the functions themselves.
672+
673+ For a ``Series ``, if you need to rename, you can add in a chained operation like this:
673674
674675.. ipython :: python
675676
@@ -679,8 +680,19 @@ need to rename, then you can add in a chained operation for a ``Series`` like th
679680 .rename(columns = {" sum" : " foo" , " mean" : " bar" , " std" : " baz" })
680681 )
681682
683+ Or, you can simply pass a list of tuples each with the name of the new column and the aggregate function:
684+
685+ .. ipython :: python
686+
687+ (
688+ grouped[" C" ]
689+ .agg([(" foo" , " sum" ), (" bar" , " mean" ), (" baz" , " std" )])
690+ )
691+
682692 For a grouped ``DataFrame ``, you can rename in a similar manner:
683693
694+ By chaining ``rename `` operation,
695+
684696.. ipython :: python
685697
686698 (
@@ -689,6 +701,16 @@ For a grouped ``DataFrame``, you can rename in a similar manner:
689701 )
690702 )
691703
704+ Or, passing a list of tuples,
705+
706+ .. ipython :: python
707+
708+ (
709+ grouped[[" C" , " D" ]].agg(
710+ [(" foo" , " sum" ), (" bar" , " mean" ), (" baz" , " std" )]
711+ )
712+ )
713+
692714 .. note ::
693715
694716 In general, the output column names should be unique, but pandas will allow
0 commit comments