File tree Expand file tree Collapse file tree 2 files changed +21
-3
lines changed
Expand file tree Collapse file tree 2 files changed +21
-3
lines changed Original file line number Diff line number Diff line change @@ -284,12 +284,9 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then
284284 -i " pandas.api.types.is_iterator PR07,SA01" \
285285 -i " pandas.api.types.is_list_like SA01" \
286286 -i " pandas.api.types.is_named_tuple PR07,SA01" \
287- -i " pandas.api.types.is_numeric_dtype SA01" \
288287 -i " pandas.api.types.is_object_dtype SA01" \
289- -i " pandas.api.types.is_period_dtype SA01" \
290288 -i " pandas.api.types.is_re PR07,SA01" \
291289 -i " pandas.api.types.is_re_compilable PR07,SA01" \
292- -i " pandas.api.types.is_timedelta64_ns_dtype SA01" \
293290 -i " pandas.api.types.pandas_dtype PR07,RT03,SA01" \
294291 -i " pandas.arrays.ArrowExtensionArray PR07,SA01" \
295292 -i " pandas.arrays.BooleanArray SA01" \
Original file line number Diff line number Diff line change @@ -412,6 +412,13 @@ def is_period_dtype(arr_or_dtype) -> bool:
412412 boolean
413413 Whether or not the array-like or dtype is of the Period dtype.
414414
415+ See Also
416+ --------
417+ api.types.is_timedelta64_ns_dtype : Check whether the provided array or dtype is
418+ of the timedelta64[ns] dtype.
419+ api.types.is_timedelta64_dtype: Check whether an array-like or dtype
420+ is of the timedelta64 dtype.
421+
415422 Examples
416423 --------
417424 >>> from pandas.core.dtypes.common import is_period_dtype
@@ -1021,6 +1028,11 @@ def is_timedelta64_ns_dtype(arr_or_dtype) -> bool:
10211028 boolean
10221029 Whether or not the array or dtype is of the timedelta64[ns] dtype.
10231030
1031+ See Also
1032+ --------
1033+ api.types.is_timedelta64_dtype: Check whether an array-like or dtype
1034+ is of the timedelta64 dtype.
1035+
10241036 Examples
10251037 --------
10261038 >>> from pandas.core.dtypes.common import is_timedelta64_ns_dtype
@@ -1140,6 +1152,15 @@ def is_numeric_dtype(arr_or_dtype) -> bool:
11401152 boolean
11411153 Whether or not the array or dtype is of a numeric dtype.
11421154
1155+ See Also
1156+ --------
1157+ api.types.is_integer_dtype: Check whether the provided array or dtype
1158+ is of an integer dtype.
1159+ api.types.is_unsigned_integer_dtype: Check whether the provided array
1160+ or dtype is of an unsigned integer dtype.
1161+ api.types.is_signed_integer_dtype: Check whether the provided array
1162+ or dtype is of an signed integer dtype.
1163+
11431164 Examples
11441165 --------
11451166 >>> from pandas.api.types import is_numeric_dtype
You can’t perform that action at this time.
0 commit comments