@@ -6647,7 +6647,6 @@ def max(
66476647 )
66486648
66496649 @deprecate_nonkeyword_arguments (version = "3.0" , allowed_args = ["self" ], name = "sum" )
6650- @doc (make_doc ("sum" , ndim = 1 ))
66516650 def sum (
66526651 self ,
66536652 axis : Axis | None = None ,
@@ -6656,6 +6655,89 @@ def sum(
66566655 min_count : int = 0 ,
66576656 ** kwargs ,
66586657 ):
6658+ """
6659+ Return the sum of the values over the requested axis.
6660+
6661+ This is equivalent to the method ``numpy.sum``.
6662+
6663+ Parameters
6664+ ----------
6665+ axis : {index (0)}
6666+ Axis for the function to be applied on.
6667+ For `Series` this parameter is unused and defaults to 0.
6668+
6669+ .. warning::
6670+
6671+ The behavior of DataFrame.sum with ``axis=None`` is deprecated,
6672+ in a future version this will reduce over both axes and return a scalar
6673+ To retain the old behavior, pass axis=0 (or do not pass axis).
6674+
6675+ .. versionadded:: 2.0.0
6676+
6677+ skipna : bool, default True
6678+ Exclude NA/null values when computing the result.
6679+ numeric_only : bool, default False
6680+ Include only float, int, boolean columns. Not implemented for Series.
6681+
6682+ min_count : int, default 0
6683+ The required number of valid values to perform the operation. If fewer than
6684+ ``min_count`` non-NA values are present the result will be NA.
6685+ **kwargs
6686+ Additional keyword arguments to be passed to the function.
6687+
6688+ Returns
6689+ -------
6690+ scalar or Series (if level specified)
6691+ Median of the values for the requested axis.
6692+
6693+ See Also
6694+ --------
6695+ numpy.sum : Equivalent numpy function for computing sum.
6696+ Series.mean : Mean of the values.
6697+ Series.median : Median of the values.
6698+ Series.std : Standard deviation of the values.
6699+ Series.var : Variance of the values.
6700+ Series.min : Minimum value.
6701+ Series.max : Maximum value.
6702+
6703+ Examples
6704+ --------
6705+ >>> idx = pd.MultiIndex.from_arrays(
6706+ ... [["warm", "warm", "cold", "cold"], ["dog", "falcon", "fish", "spider"]],
6707+ ... names=["blooded", "animal"],
6708+ ... )
6709+ >>> s = pd.Series([4, 2, 0, 8], name="legs", index=idx)
6710+ >>> s
6711+ blooded animal
6712+ warm dog 4
6713+ falcon 2
6714+ cold fish 0
6715+ spider 8
6716+ Name: legs, dtype: int64
6717+
6718+ >>> s.sum()
6719+ 14
6720+
6721+ By default, the sum of an empty or all-NA Series is ``0``.
6722+
6723+ >>> pd.Series([], dtype="float64").sum() # min_count=0 is the default
6724+ 0.0
6725+
6726+ This can be controlled with the ``min_count`` parameter. For example, if
6727+ you'd like the sum of an empty series to be NaN, pass ``min_count=1``.
6728+
6729+ >>> pd.Series([], dtype="float64").sum(min_count=1)
6730+ nan
6731+
6732+ Thanks to the ``skipna`` parameter, ``min_count`` handles all-NA and
6733+ empty series identically.
6734+
6735+ >>> pd.Series([np.nan]).sum()
6736+ 0.0
6737+
6738+ >>> pd.Series([np.nan]).sum(min_count=1)
6739+ nan
6740+ """
66596741 return NDFrame .sum (
66606742 self ,
66616743 axis = axis ,
0 commit comments