@@ -138,34 +138,30 @@ def mean(self, *, skipna: bool = True, axis: int | None = 0):
138138 @property
139139 def freq (self ) -> BaseOffset | None :
140140 """
141- Return the frequency object as a string if it's set, otherwise None.
141+ Return the frequency object if it is set, otherwise None.
142+
143+ To learn more about the frequency strings, please see
144+ :ref:`this link<timeseries.offset_aliases>`.
142145
143146 See Also
144147 --------
145- DatetimeIndex.inferred_freq : Returns a string representing a frequency
146- generated by infer_freq .
148+ DatetimeIndex.freq : Return the frequency object if it is set, otherwise None.
149+ PeriodIndex.freq : Return the frequency object if it is set, otherwise None .
147150
148151 Examples
149152 --------
150- For DatetimeIndex:
151-
152- >>> idx = pd.DatetimeIndex(["1/1/2020 10:00:00+00:00"], freq="D")
153- >>> idx.freqstr
154- 'D'
155-
156- The frequency can be inferred if there are more than 2 points:
157-
158- >>> idx = pd.DatetimeIndex(
159- ... ["2018-01-01", "2018-01-03", "2018-01-05"], freq="infer"
153+ >>> datetimeindex = pd.date_range(
154+ ... "2022-02-22 02:22:22", periods=10, tz="America/Chicago", freq="h"
160155 ... )
161- >>> idx.freqstr
162- '2D'
163-
164- For PeriodIndex:
165-
166- >>> idx = pd.PeriodIndex(["2023-1", "2023-2", "2023-3"], freq="M")
167- >>> idx.freqstr
168- 'M'
156+ >>> datetimeindex
157+ DatetimeIndex(['2022-02-22 02:22:22-06:00', '2022-02-22 03:22:22-06:00',
158+ '2022-02-22 04:22:22-06:00', '2022-02-22 05:22:22-06:00',
159+ '2022-02-22 06:22:22-06:00', '2022-02-22 07:22:22-06:00',
160+ '2022-02-22 08:22:22-06:00', '2022-02-22 09:22:22-06:00',
161+ '2022-02-22 10:22:22-06:00', '2022-02-22 11:22:22-06:00'],
162+ dtype='datetime64[ns, America/Chicago]', freq='h')
163+ >>> datetimeindex.freq
164+ <Hour>
169165 """
170166 return self ._data .freq
171167
@@ -669,21 +665,29 @@ def shift(self, periods: int = 1, freq=None) -> Self:
669665 @cache_readonly
670666 def inferred_freq (self ) -> str | None :
671667 """
672- Tries to return a string representing a frequency generated by infer_freq.
673- Returns None if it can't autodetect the frequency.
668+ Return the inferred frequency of the index.
669+
670+ Returns
671+ -------
672+ str or None
673+ A string representing a frequency generated by ``infer_freq``.
674+ Returns ``None`` if the frequency cannot be inferred.
674675
675676 See Also
676677 --------
677678 DatetimeIndex.freqstr : Return the frequency object as a string if it's set,
678- otherwise None.
679+ otherwise `` None`` .
679680
680681 Examples
681682 --------
682- For DatetimeIndex:
683+ For ``DatetimeIndex``:
684+
683685 >>> idx = pd.DatetimeIndex(["2018-01-01", "2018-01-03", "2018-01-05"])
684686 >>> idx.inferred_freq
685687 '2D'
686- For TimedeltaIndex:
688+
689+ For ``TimedeltaIndex``:
690+
687691 >>> tdelta_idx = pd.to_timedelta(["0 days", "10 days", "20 days"])
688692 >>> tdelta_idx
689693 TimedeltaIndex(['0 days', '10 days', '20 days'],
0 commit comments