@@ -2176,23 +2176,54 @@ def test_mixed_col_index_dtype(string_dtype_no_object):
21762176
21772177
21782178@pytest .mark .parametrize ("op" , ["add" , "sub" , "mul" , "div" , "mod" , "truediv" , "pow" ])
2179- def test_df_series_fill_value (op ):
2179+ def test_df_fill_value_operations (op ):
21802180 # GH 61581
2181- data = np .arange (50 ).reshape (10 , 5 )
2181+ input_data = np .arange (50 ).reshape (10 , 5 )
2182+ fill_val = 5
21822183 columns = list ("ABCDE" )
2183- df = DataFrame (data , columns = columns )
2184+ df = DataFrame (input_data , columns = columns )
21842185 for i in range (5 ):
21852186 df .iat [i , i ] = np .nan
21862187 df .iat [i + 1 , i ] = np .nan
21872188 df .iat [i + 4 , i ] = np .nan
21882189
2189- df_a = df .iloc [:, :- 1 ]
2190- df_b = df .iloc [:, - 1 ]
2191- nan_mask = df_a .isna ().astype (int ).mul (df_b .isna ().astype (int ), axis = 0 ).astype (bool )
2190+ df_base = df .iloc [:, :- 1 ]
2191+ df_mult = df .iloc [:, - 1 ]
2192+ mask = df .isna ().values
2193+ mask = mask [:, :- 1 ] & mask [:, [- 1 ]]
21922194
2193- df_result = getattr (df_a , op )(df_b , axis = 0 , fill_value = 5 )
2194- df_expected = getattr (df_a .fillna (5 ), op )( df_b . fillna ( 5 ), axis = 0 ). mask (
2195- nan_mask , np . nan
2196- )
2195+ df_result = getattr (df_base , op )(df_mult , axis = 0 , fill_value = fill_val )
2196+ df_expected = getattr (df_base .fillna (fill_val ), op )(
2197+ df_mult . fillna ( fill_val ), axis = 0
2198+ ). mask ( mask , np . nan )
21972199
21982200 tm .assert_frame_equal (df_result , df_expected )
2201+
2202+
2203+ # ! Currently implementing
2204+ # @pytest.mark.parametrize("input_data, fill_val",
2205+ # [
2206+ # (np.arange(50).reshape(10, 5), 5), #Numpy
2207+ # (pd.array(np.random.choice([True, False], size=(10, 5)),
2208+ # dtype="boolean"), True),
2209+ # ]
2210+ # )
2211+ # def test_df_fill_value_dtype(input_data, fill_val):
2212+ # # GH 61581
2213+ # columns = list("ABCDE")
2214+ # df = DataFrame(input_data, columns=columns)
2215+ # for i in range(5):
2216+ # df.iat[i, i] = np.nan
2217+ # df.iat[i + 1, i] = np.nan
2218+ # df.iat[i + 4, i] = np.nan
2219+
2220+ # df_base = df.iloc[:, :-1]
2221+ # df_mult = df.iloc[:, -1]
2222+ # mask = df.isna().values
2223+ # mask = mask[:, :-1] & mask[:, [-1]]
2224+
2225+ # df_result = df_base.mul(df_mult, axis=0, fill_value=fill_val)
2226+ # df_expected = (df_base.fillna(fill_val).mul(df_mult.fillna(fill_val),
2227+ # axis=0)).mask(mask, np.nan)
2228+
2229+ # tm.assert_frame_equal(df_result, df_expected)
0 commit comments