@@ -1033,12 +1033,104 @@ def nsmallest(
10331033 result = self ._python_apply_general (f , data , not_indexed_same = True )
10341034 return result
10351035
1036- @doc (Series .idxmin .__doc__ )
10371036 def idxmin (self , skipna : bool = True ) -> Series :
1037+ """
1038+ Return the row label of the minimum value.
1039+
1040+ If multiple values equal the minimum, the first row label with that
1041+ value is returned.
1042+
1043+ Parameters
1044+ ----------
1045+ skipna : bool, default True
1046+ Exclude NA/null values. If the entire Series is NA, the result
1047+ will be NA.
1048+
1049+ Returns
1050+ -------
1051+ Index
1052+ Label of the minimum value.
1053+
1054+ Raises
1055+ ------
1056+ ValueError
1057+ If the Series is empty.
1058+
1059+ See Also
1060+ --------
1061+ numpy.argmin : Return indices of the minimum values
1062+ along the given axis.
1063+ DataFrame.idxmin : Return index of first occurrence of minimum
1064+ over requested axis.
1065+ Series.idxmax : Return index *label* of the first occurrence
1066+ of maximum of values.
1067+
1068+ Examples
1069+ --------
1070+ >>> ser = pd.Series([1, 2, 3, 4], index=pd.DatetimeIndex(
1071+ ... ['2023-01-01', '2023-01-15', '2023-02-01', '2023-02-15']))
1072+ >>> ser
1073+ 2023-01-01 1
1074+ 2023-01-15 2
1075+ 2023-02-01 3
1076+ 2023-02-15 4
1077+ dtype: int64
1078+
1079+ >>> ser.groupby(['a', 'a', 'b', 'b']).idxmin()
1080+ a 2023-01-01
1081+ b 2023-02-01
1082+ dtype: datetime64[ns]
1083+ """
10381084 return self ._idxmax_idxmin ("idxmin" , skipna = skipna )
10391085
1040- @doc (Series .idxmax .__doc__ )
10411086 def idxmax (self , skipna : bool = True ) -> Series :
1087+ """
1088+ Return the row label of the maximum value.
1089+
1090+ If multiple values equal the maximum, the first row label with that
1091+ value is returned.
1092+
1093+ Parameters
1094+ ----------
1095+ skipna : bool, default True
1096+ Exclude NA/null values. If the entire Series is NA, the result
1097+ will be NA.
1098+
1099+ Returns
1100+ -------
1101+ Index
1102+ Label of the maximum value.
1103+
1104+ Raises
1105+ ------
1106+ ValueError
1107+ If the Series is empty.
1108+
1109+ See Also
1110+ --------
1111+ numpy.argmax : Return indices of the maximum values
1112+ along the given axis.
1113+ DataFrame.idxmax : Return index of first occurrence of maximum
1114+ over requested axis.
1115+ Series.idxmin : Return index *label* of the first occurrence
1116+ of minimum of values.
1117+
1118+ Examples
1119+ --------
1120+ >>> ser = pd.Series([1, 2, 3, 4], index=pd.DatetimeIndex(
1121+ ... ['2023-01-01', '2023-01-15', '2023-02-01', '2023-02-15']))
1122+ >>> ser
1123+ 2023-01-01 1
1124+ 2023-01-15 2
1125+ 2023-02-01 3
1126+ 2023-02-15 4
1127+ dtype: int64
1128+
1129+ >>> ser.groupby(['a', 'a', 'b', 'b']).idxmax()
1130+ a 2023-01-15
1131+ b 2023-02-15
1132+ dtype: datetime64[ns]
1133+ """
10421134 return self ._idxmax_idxmin ("idxmax" , skipna = skipna )
10431135
10441136 @doc (Series .corr .__doc__ )
0 commit comments