|
1 | 1 | { |
2 | 2 | "cells": [ |
3 | 3 | { |
| 4 | + "attachments": {}, |
4 | 5 | "cell_type": "markdown", |
5 | 6 | "id": "f2e8530c-5ba0-4041-a309-18919d5d0533", |
6 | 7 | "metadata": { |
|
12 | 13 | }, |
13 | 14 | "source": [ |
14 | 15 | "(interventional_distribution)=\n", |
15 | | - "# Interventional distributions and graph mutilation with the do-operator\n", |
| 16 | + "# Interventional distributions and graph mutation with the do-operator\n", |
16 | 17 | "\n", |
17 | 18 | ":::{post} July, 2023\n", |
18 | 19 | ":tags: causal inference, do-operator, graph mutation\n", |
|
22 | 23 | ] |
23 | 24 | }, |
24 | 25 | { |
| 26 | + "attachments": {}, |
25 | 27 | "cell_type": "markdown", |
26 | 28 | "id": "8f973a4f-def4-4fb6-b166-2aefbdf5eee2", |
27 | 29 | "metadata": { |
|
44 | 46 | ] |
45 | 47 | }, |
46 | 48 | { |
| 49 | + "attachments": {}, |
47 | 50 | "cell_type": "markdown", |
48 | 51 | "id": "ed816fbf-320c-44f7-a711-cb4750d86e24", |
49 | 52 | "metadata": {}, |
|
75 | 78 | ] |
76 | 79 | }, |
77 | 80 | { |
| 81 | + "attachments": {}, |
78 | 82 | "cell_type": "markdown", |
79 | 83 | "id": "e2441116-c8a5-41af-be95-9eeddf2b0e2e", |
80 | 84 | "metadata": { |
|
136 | 140 | ] |
137 | 141 | }, |
138 | 142 | { |
| 143 | + "attachments": {}, |
139 | 144 | "cell_type": "markdown", |
140 | 145 | "id": "782d6135-2e59-4462-8b9c-9832a58751ef", |
141 | 146 | "metadata": { |
|
259 | 264 | ] |
260 | 265 | }, |
261 | 266 | { |
| 267 | + "attachments": {}, |
262 | 268 | "cell_type": "markdown", |
263 | 269 | "id": "f618f053-266b-4006-a521-f892cb8519e1", |
264 | 270 | "metadata": { |
|
281 | 287 | ] |
282 | 288 | }, |
283 | 289 | { |
| 290 | + "attachments": {}, |
284 | 291 | "cell_type": "markdown", |
285 | 292 | "id": "ca2ed504-ffda-4f1d-8d18-cdb06608202b", |
286 | 293 | "metadata": { |
|
301 | 308 | ] |
302 | 309 | }, |
303 | 310 | { |
| 311 | + "attachments": {}, |
304 | 312 | "cell_type": "markdown", |
305 | 313 | "id": "83b8106f-c9e1-4277-ba38-f13b03a33ef6", |
306 | 314 | "metadata": { |
|
466 | 474 | ] |
467 | 475 | }, |
468 | 476 | { |
| 477 | + "attachments": {}, |
469 | 478 | "cell_type": "markdown", |
470 | 479 | "id": "56832ddc-ef61-4dbf-b46f-b6ef2ae8820e", |
471 | 480 | "metadata": { |
|
482 | 491 | ] |
483 | 492 | }, |
484 | 493 | { |
| 494 | + "attachments": {}, |
485 | 495 | "cell_type": "markdown", |
486 | 496 | "id": "24792fb8-3e40-41b5-a26a-4a2d4da052ed", |
487 | 497 | "metadata": { |
|
503 | 513 | ] |
504 | 514 | }, |
505 | 515 | { |
| 516 | + "attachments": {}, |
506 | 517 | "cell_type": "markdown", |
507 | 518 | "id": "aac4d49b-6a1e-4d77-a9c7-205050bebb9f", |
508 | 519 | "metadata": { |
|
572 | 583 | ] |
573 | 584 | }, |
574 | 585 | { |
| 586 | + "attachments": {}, |
575 | 587 | "cell_type": "markdown", |
576 | 588 | "id": "b70e42b0-61a1-4c62-8dd9-d973d60d7946", |
577 | 589 | "metadata": { |
|
727 | 739 | ] |
728 | 740 | }, |
729 | 741 | { |
| 742 | + "attachments": {}, |
730 | 743 | "cell_type": "markdown", |
731 | 744 | "id": "3bb5134c-f476-4b8f-9338-1ed07e1fbb13", |
732 | 745 | "metadata": { |
|
763 | 776 | ] |
764 | 777 | }, |
765 | 778 | { |
| 779 | + "attachments": {}, |
766 | 780 | "cell_type": "markdown", |
767 | 781 | "id": "e2d1a7ca-1948-4165-92aa-3713df60b73b", |
768 | 782 | "metadata": {}, |
|
773 | 787 | ] |
774 | 788 | }, |
775 | 789 | { |
| 790 | + "attachments": {}, |
776 | 791 | "cell_type": "markdown", |
777 | 792 | "id": "453edf32-48d2-4d7f-96fb-6fb61851de9e", |
778 | 793 | "metadata": { |
|
783 | 798 | "tags": [] |
784 | 799 | }, |
785 | 800 | "source": [ |
786 | | - "However, we are going to implement these using Bayesian causal DAGs with PyMC. Let's see how we can do this, then generate samples from them using `pm.sample_prior_predictive`. As we go with each DAG, we'll package the data up in `DataFrame`'s for plotting later, and also plot the graphviz representation of the PyMC models. You'll see that while these are a fraction more visually complex, they do actually match up with the causal DAGs we've specified above." |
| 801 | + "However, we are going to implement these using Bayesian causal DAGs with PyMC. Let's see how we can do this, then generate samples from them using `pm.sample_prior_predictive`. As we go with each DAG, we'll extract the samples for plotting later, and also plot the graphviz representation of the PyMC models. You'll see that while these are a fraction more visually complex, they do actually match up with the causal DAGs we've specified above." |
787 | 802 | ] |
788 | 803 | }, |
789 | 804 | { |
|
1095 | 1110 | ] |
1096 | 1111 | }, |
1097 | 1112 | { |
| 1113 | + "attachments": {}, |
1098 | 1114 | "cell_type": "markdown", |
1099 | 1115 | "id": "07b66542-dd10-43b1-9dfb-5b438f756736", |
1100 | 1116 | "metadata": { |
|
1164 | 1180 | ] |
1165 | 1181 | }, |
1166 | 1182 | { |
| 1183 | + "attachments": {}, |
1167 | 1184 | "cell_type": "markdown", |
1168 | 1185 | "id": "6625a68d-e19e-4490-b486-29e3bff42716", |
1169 | 1186 | "metadata": { |
|
1178 | 1195 | ] |
1179 | 1196 | }, |
1180 | 1197 | { |
| 1198 | + "attachments": {}, |
1181 | 1199 | "cell_type": "markdown", |
1182 | 1200 | "id": "b44eef67-7ad3-46cc-b18c-e589b9fd271b", |
1183 | 1201 | "metadata": { |
|
1192 | 1210 | ] |
1193 | 1211 | }, |
1194 | 1212 | { |
| 1213 | + "attachments": {}, |
1195 | 1214 | "cell_type": "markdown", |
1196 | 1215 | "id": "2d30eb22-2560-495a-8af2-f9c9fe04848a", |
1197 | 1216 | "metadata": {}, |
|
1219 | 1238 | ] |
1220 | 1239 | }, |
1221 | 1240 | { |
| 1241 | + "attachments": {}, |
1222 | 1242 | "cell_type": "markdown", |
1223 | 1243 | "id": "99ccc753-e3ef-4834-b02f-4a8d82749fe5", |
1224 | 1244 | "metadata": {}, |
|
1227 | 1247 | ] |
1228 | 1248 | }, |
1229 | 1249 | { |
| 1250 | + "attachments": {}, |
1230 | 1251 | "cell_type": "markdown", |
1231 | 1252 | "id": "d0896e42-ee27-4c37-a065-7c78d6f6c0e2", |
1232 | 1253 | "metadata": { |
|
1321 | 1342 | ] |
1322 | 1343 | }, |
1323 | 1344 | { |
| 1345 | + "attachments": {}, |
1324 | 1346 | "cell_type": "markdown", |
1325 | 1347 | "id": "95844edc-2e47-47a1-986a-c6e0b30386c0", |
1326 | 1348 | "metadata": {}, |
|
1471 | 1493 | ] |
1472 | 1494 | }, |
1473 | 1495 | { |
| 1496 | + "attachments": {}, |
1474 | 1497 | "cell_type": "markdown", |
1475 | 1498 | "id": "688de710-654d-4905-a328-81941aaa1fe6", |
1476 | 1499 | "metadata": { |
|
1485 | 1508 | ] |
1486 | 1509 | }, |
1487 | 1510 | { |
| 1511 | + "attachments": {}, |
1488 | 1512 | "cell_type": "markdown", |
1489 | 1513 | "id": "01ba8784-cd8b-45e8-b9ec-1fd6d56b010a", |
1490 | 1514 | "metadata": { |
|
1532 | 1556 | ] |
1533 | 1557 | }, |
1534 | 1558 | { |
| 1559 | + "attachments": {}, |
1535 | 1560 | "cell_type": "markdown", |
1536 | 1561 | "id": "d9d4fe62-b694-4a90-9e7f-21344f69fcf6", |
1537 | 1562 | "metadata": { |
|
1599 | 1624 | ] |
1600 | 1625 | }, |
1601 | 1626 | { |
| 1627 | + "attachments": {}, |
1602 | 1628 | "cell_type": "markdown", |
1603 | 1629 | "id": "f546f9e2-0f9b-4eaa-93e3-b5887b757a37", |
1604 | 1630 | "metadata": { |
|
1675 | 1701 | ] |
1676 | 1702 | }, |
1677 | 1703 | { |
| 1704 | + "attachments": {}, |
1678 | 1705 | "cell_type": "markdown", |
1679 | 1706 | "id": "9c4122ee-9709-4c9c-b0eb-a4c20e1b7f3a", |
1680 | 1707 | "metadata": { |
|
1761 | 1788 | ] |
1762 | 1789 | }, |
1763 | 1790 | { |
| 1791 | + "attachments": {}, |
1764 | 1792 | "cell_type": "markdown", |
1765 | 1793 | "id": "dec5c8d6-e562-47ca-a263-2e8269704d04", |
1766 | 1794 | "metadata": { |
|
1775 | 1803 | ] |
1776 | 1804 | }, |
1777 | 1805 | { |
| 1806 | + "attachments": {}, |
1778 | 1807 | "cell_type": "markdown", |
1779 | 1808 | "id": "e546b0ab-dd66-4c20-b814-c8cd1bc6c710", |
1780 | 1809 | "metadata": { |
|
1797 | 1826 | ] |
1798 | 1827 | }, |
1799 | 1828 | { |
| 1829 | + "attachments": {}, |
1800 | 1830 | "cell_type": "markdown", |
1801 | 1831 | "id": "f17a9b3b-a3c2-4919-893b-569049db03d6", |
1802 | 1832 | "metadata": { |
|
1812 | 1842 | ] |
1813 | 1843 | }, |
1814 | 1844 | { |
| 1845 | + "attachments": {}, |
1815 | 1846 | "cell_type": "markdown", |
1816 | 1847 | "id": "ecbb878d-531b-4c96-afe2-c39f928b9162", |
1817 | 1848 | "metadata": {}, |
|
1824 | 1855 | ] |
1825 | 1856 | }, |
1826 | 1857 | { |
| 1858 | + "attachments": {}, |
1827 | 1859 | "cell_type": "markdown", |
1828 | 1860 | "id": "9fd548d0-5977-4a19-935a-506e86063887", |
1829 | 1861 | "metadata": {}, |
|
1871 | 1903 | ] |
1872 | 1904 | }, |
1873 | 1905 | { |
| 1906 | + "attachments": {}, |
1874 | 1907 | "cell_type": "markdown", |
1875 | 1908 | "id": "62e8040f-452c-4a11-90f5-fa94eb03c971", |
1876 | 1909 | "metadata": { |
|
0 commit comments