|
68 | 68 | "draw", |
69 | 69 | "sample_prior_predictive", |
70 | 70 | "sample_posterior_predictive", |
71 | | - "sample_posterior_predictive_w", |
72 | 71 | ) |
73 | 72 |
|
74 | 73 |
|
@@ -671,57 +670,3 @@ def sample_posterior_predictive( |
671 | 670 | idata.extend(idata_pp) |
672 | 671 | return idata |
673 | 672 | return idata_pp |
674 | | - |
675 | | - |
676 | | -def sample_posterior_predictive_w( |
677 | | - traces, |
678 | | - samples: Optional[int] = None, |
679 | | - models: Optional[list[Model]] = None, |
680 | | - weights: Optional[ArrayLike] = None, |
681 | | - random_seed: RandomState = None, |
682 | | - progressbar: bool = True, |
683 | | - return_inferencedata: bool = True, |
684 | | - idata_kwargs: Optional[dict] = None, |
685 | | -): |
686 | | - """Generate weighted posterior predictive samples from a list of models and |
687 | | - a list of traces according to a set of weights. |
688 | | -
|
689 | | - Parameters |
690 | | - ---------- |
691 | | - traces : list or list of lists |
692 | | - List of traces generated from MCMC sampling (xarray.Dataset, arviz.InferenceData, or |
693 | | - MultiTrace), or a list of list containing dicts from find_MAP() or points. The number of |
694 | | - traces should be equal to the number of weights. |
695 | | - samples : int, optional |
696 | | - Number of posterior predictive samples to generate. Defaults to the |
697 | | - length of the shorter trace in traces. |
698 | | - models : list of Model |
699 | | - List of models used to generate the list of traces. The number of models should be equal to |
700 | | - the number of weights and the number of observed RVs should be the same for all models. |
701 | | - By default a single model will be inferred from ``with`` context, in this case results will |
702 | | - only be meaningful if all models share the same distributions for the observed RVs. |
703 | | - weights : array-like, optional |
704 | | - Individual weights for each trace. Default, same weight for each model. |
705 | | - random_seed : int, RandomState or Generator, optional |
706 | | - Seed for the random number generator. |
707 | | - progressbar : bool, optional default True |
708 | | - Whether or not to display a progress bar in the command line. The bar shows the percentage |
709 | | - of completion, the sampling speed in samples per second (SPS), and the estimated remaining |
710 | | - time until completion ("expected time of arrival"; ETA). |
711 | | - return_inferencedata : bool |
712 | | - Whether to return an :class:`arviz:arviz.InferenceData` (True) object or a dictionary (False). |
713 | | - Defaults to True. |
714 | | - idata_kwargs : dict, optional |
715 | | - Keyword arguments for :func:`pymc.to_inference_data` |
716 | | -
|
717 | | - Returns |
718 | | - ------- |
719 | | - arviz.InferenceData or Dict |
720 | | - An ArviZ ``InferenceData`` object containing the posterior predictive samples from the |
721 | | - weighted models (default), or a dictionary with variable names as keys, and samples as |
722 | | - numpy arrays. |
723 | | - """ |
724 | | - raise FutureWarning( |
725 | | - "The function `sample_posterior_predictive_w` has been removed in PyMC 4.3.0. " |
726 | | - "Switch to `arviz.stats.weight_predictions`" |
727 | | - ) |
0 commit comments