Skip to content

The Cadence runtime example needs update #16898

@jirioc

Description

@jirioc

🐛 Describe the bug

  1. Building the runtime example is not possible because the examples/cadence/CMakeLists.txt uses outdated paths. For example, this fails
    add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/hifi/operators)
    because the hifi subdirectory does not exist inside examples/cadence but can be found in backends/cadence.

  2. The file backends/cadence/hifi/kernels/CMakeLists.txt uses include paths from backends/cadence/hifi/third-party/nnlib/nnlib-hifi4 that do not exist. And backends/cadence/hifi/third-party/nnlib/CMakeLists.txt also uses such path. Even if I clone the nnlib from GitHub to this directory, it does not compile. The compilation reports conflicting types between nnlib and the original third-party content.

  3. The file backends/cadence/hifi/kernels/CMakeLists.txt uses incomplete name of source file op_quantized_fully_connected_out.

Versions

Collecting environment information...
PyTorch version: 2.11.0.dev20251222+cpu
Is debug build: False
CUDA used to build PyTorch: Could not collect
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.31.6
Libc version: glibc-2.31

Python version: 3.10.18 (main, Jun 4 2025, 08:56:00) [GCC 9.4.0] (64-bit runtime)
Python platform: Linux-5.4.0-216-generic-x86_64-with-glibc2.31
Is CUDA available: False
CUDA runtime version: 10.1.243
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: Could not collect
Nvidia driver version: Could not collect
cuDNN version: Could not collect
Is XPU available: False
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
Caching allocator config: N/A

CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
Address sizes: 43 bits physical, 48 bits virtual
CPU(s): 6
On-line CPU(s) list: 0-5
Thread(s) per core: 1
Core(s) per socket: 6
Socket(s): 1
NUMA node(s): 1
Vendor ID: GenuineIntel
CPU family: 6
Model: 79
Model name: Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz
Stepping: 0
CPU MHz: 2992.968
BogoMIPS: 5985.93
Hypervisor vendor: VMware
Virtualization type: full
L1d cache: 192 KiB
L1i cache: 192 KiB
L2 cache: 6 MiB
L3 cache: 24.8 MiB
NUMA node0 CPU(s): 0-5
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: KVM: Vulnerable
Vulnerability L1tf: Mitigation; PTE Inversion
Vulnerability Mds: Mitigation; Clear CPU buffers; SMT Host state unknown
Vulnerability Meltdown: Mitigation; PTI
Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT Host state unknown
Vulnerability Retbleed: Mitigation; IBRS
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; IBRS; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI SW loop, KVM SW loop
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 avx2 smep bmi2 invpcid rdseed adx smap xsaveopt arat md_clear flush_l1d arch_capabilities

Versions of relevant libraries:
[pip3] executorch==1.1.0a0+cccf977
[pip3] flake8==6.1.0
[pip3] flake8-breakpoint==1.1.0
[pip3] flake8-bugbear==24.4.26
[pip3] flake8-comprehensions==3.14.0
[pip3] flake8-plugin-utils==1.3.3
[pip3] flake8-pyi==23.5.0
[pip3] mypy==1.14.1
[pip3] mypy_extensions==1.1.0
[pip3] numpy==2.0.0
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] optree==0.17.0
[pip3] pytorch_tokenizers==1.0.1
[pip3] torch==2.11.0.dev20251222+cpu
[pip3] torchao==0.16.0+git08e5e203f
[pip3] torchaudio==2.10.0.dev20251222+cpu
[pip3] torchdata==0.11.0
[pip3] torchgen==0.0.1
[pip3] torchsr==1.0.4
[pip3] torchtune==0.6.1
[pip3] torchvision==0.25.0.dev20251222+cpu
[pip3] triton==3.2.0
[conda] Could not collect

Metadata

Metadata

Assignees

Labels

No labels
No labels

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions