|
15 | 15 | "source": [ |
16 | 16 | "import deepstack.core as ds\n", |
17 | 17 | "from PIL import Image\n", |
| 18 | + "import pprint\n", |
18 | 19 | "import matplotlib.pyplot as plt\n", |
19 | 20 | "%matplotlib inline" |
20 | 21 | ] |
21 | 22 | }, |
22 | 23 | { |
23 | 24 | "cell_type": "code", |
24 | | - "execution_count": 2, |
| 25 | + "execution_count": 6, |
25 | 26 | "metadata": {}, |
26 | 27 | "outputs": [], |
27 | 28 | "source": [ |
28 | 29 | "IP_ADDRESS = 'localhost'\n", |
29 | | - "PORT = '5000'" |
| 30 | + "PORT = '5000'\n", |
| 31 | + "API_KEY = \"Mysecretkey\"\n", |
| 32 | + "# API_KEY = \"BadKey\"\n", |
| 33 | + "TIMEOUT = 8" |
30 | 34 | ] |
31 | 35 | }, |
32 | 36 | { |
33 | 37 | "cell_type": "code", |
34 | | - "execution_count": 3, |
| 38 | + "execution_count": 7, |
35 | 39 | "metadata": {}, |
36 | 40 | "outputs": [], |
37 | 41 | "source": [ |
38 | | - "dsobject = ds.DeepstackObject(IP_ADDRESS, PORT)" |
| 42 | + "dsobject = ds.DeepstackObject(IP_ADDRESS, PORT, API_KEY, TIMEOUT)" |
39 | 43 | ] |
40 | 44 | }, |
41 | 45 | { |
42 | 46 | "cell_type": "code", |
43 | | - "execution_count": 4, |
| 47 | + "execution_count": 8, |
44 | 48 | "metadata": {}, |
45 | 49 | "outputs": [ |
46 | 50 | { |
|
71 | 75 | }, |
72 | 76 | { |
73 | 77 | "cell_type": "code", |
74 | | - "execution_count": 5, |
| 78 | + "execution_count": 9, |
75 | 79 | "metadata": {}, |
76 | 80 | "outputs": [ |
77 | 81 | { |
78 | 82 | "name": "stdout", |
79 | 83 | "output_type": "stream", |
80 | 84 | "text": [ |
81 | | - "CPU times: user 7.72 ms, sys: 6.6 ms, total: 14.3 ms\n", |
82 | | - "Wall time: 7.63 s\n" |
| 85 | + "[{'confidence': 0.9998661, 'label': 'person', 'y_min': 0, 'x_min': 258, 'y_max': 676, 'x_max': 485}, {'confidence': 0.9996547, 'label': 'person', 'y_min': 0, 'x_min': 405, 'y_max': 652, 'x_max': 639}, {'confidence': 0.99745613, 'label': 'dog', 'y_min': 311, 'x_min': 624, 'y_max': 591, 'x_max': 825}]\n" |
83 | 86 | ] |
84 | 87 | } |
85 | 88 | ], |
86 | 89 | "source": [ |
87 | | - "%%time\n", |
88 | | - "dsobject.process_file(image_path)" |
| 90 | + "#%%time\n", |
| 91 | + "try:\n", |
| 92 | + " dsobject.process_file(image_path)\n", |
| 93 | + " print(dsobject.predictions)\n", |
| 94 | + "except ds.DeepstackException as exc:\n", |
| 95 | + " print(exc)" |
89 | 96 | ] |
90 | 97 | }, |
91 | 98 | { |
|
97 | 104 | }, |
98 | 105 | { |
99 | 106 | "cell_type": "code", |
100 | | - "execution_count": 6, |
| 107 | + "execution_count": 10, |
101 | 108 | "metadata": {}, |
102 | 109 | "outputs": [ |
103 | 110 | { |
|
123 | 130 | " 'x_max': 825}]" |
124 | 131 | ] |
125 | 132 | }, |
126 | | - "execution_count": 6, |
| 133 | + "execution_count": 10, |
127 | 134 | "metadata": {}, |
128 | 135 | "output_type": "execute_result" |
129 | 136 | } |
|
142 | 149 | }, |
143 | 150 | { |
144 | 151 | "cell_type": "code", |
145 | | - "execution_count": 20, |
| 152 | + "execution_count": 11, |
146 | 153 | "metadata": {}, |
147 | 154 | "outputs": [], |
148 | 155 | "source": [ |
|
158 | 165 | }, |
159 | 166 | { |
160 | 167 | "cell_type": "code", |
161 | | - "execution_count": 10, |
| 168 | + "execution_count": 12, |
162 | 169 | "metadata": {}, |
163 | 170 | "outputs": [ |
164 | 171 | { |
|
167 | 174 | "{'dog', 'person'}" |
168 | 175 | ] |
169 | 176 | }, |
170 | | - "execution_count": 10, |
| 177 | + "execution_count": 12, |
171 | 178 | "metadata": {}, |
172 | 179 | "output_type": "execute_result" |
173 | 180 | } |
|
185 | 192 | }, |
186 | 193 | { |
187 | 194 | "cell_type": "code", |
188 | | - "execution_count": 11, |
| 195 | + "execution_count": 13, |
189 | 196 | "metadata": {}, |
190 | 197 | "outputs": [ |
191 | 198 | { |
192 | 199 | "data": { |
193 | 200 | "text/plain": [ |
194 | | - "{'dog': 1, 'person': 2}" |
| 201 | + "{'person': 2, 'dog': 1}" |
195 | 202 | ] |
196 | 203 | }, |
197 | | - "execution_count": 11, |
| 204 | + "execution_count": 13, |
198 | 205 | "metadata": {}, |
199 | 206 | "output_type": "execute_result" |
200 | 207 | } |
|
212 | 219 | }, |
213 | 220 | { |
214 | 221 | "cell_type": "code", |
215 | | - "execution_count": 16, |
| 222 | + "execution_count": 14, |
216 | 223 | "metadata": {}, |
217 | 224 | "outputs": [ |
218 | 225 | { |
|
221 | 228 | "[0.9998661, 0.9996547]" |
222 | 229 | ] |
223 | 230 | }, |
224 | | - "execution_count": 16, |
| 231 | + "execution_count": 14, |
225 | 232 | "metadata": {}, |
226 | 233 | "output_type": "execute_result" |
227 | 234 | } |
|
240 | 247 | }, |
241 | 248 | { |
242 | 249 | "cell_type": "code", |
243 | | - "execution_count": 19, |
| 250 | + "execution_count": 15, |
244 | 251 | "metadata": {}, |
245 | 252 | "outputs": [ |
246 | 253 | { |
247 | | - "data": { |
248 | | - "text/plain": [ |
249 | | - "[0.9998661]" |
250 | | - ] |
251 | | - }, |
252 | | - "execution_count": 19, |
253 | | - "metadata": {}, |
254 | | - "output_type": "execute_result" |
| 254 | + "name": "stdout", |
| 255 | + "output_type": "stream", |
| 256 | + "text": [ |
| 257 | + "1\n" |
| 258 | + ] |
255 | 259 | } |
256 | 260 | ], |
257 | 261 | "source": [ |
258 | 262 | "CONFIDENCE_THRESHOLD = 0.9997\n", |
259 | | - "ds.get_confidences_above_threshold(confidences, CONFIDENCE_THRESHOLD)" |
| 263 | + "print(len(ds.get_confidences_above_threshold(confidences, CONFIDENCE_THRESHOLD)))" |
260 | 264 | ] |
261 | 265 | }, |
262 | 266 | { |
|
0 commit comments