@@ -80,21 +80,52 @@ def acyclic_orientations(G):
8080 sage: len(list(it))
8181 54
8282
83+ Test for arbitary vertex labels::
84+
85+ sage: g_str = Graph([('abc', 'def'), ('ghi', 'def'), ('xyz', 'abc'), ('xyz', 'uvw'), ('uvw', 'abc'), ('uvw', 'ghi')])
86+ sage: it = g_str.acyclic_orientations()
87+ sage: len(list(it))
88+ 42
89+
8390 TESTS:
8491
92+ To count the number of acyclic orientations for a graph with 0 vertices::
93+
94+ sage: list(Graph().acyclic_orientations())
95+ [Graph on 0 vertices]
96+
97+ To count the number of acyclic orientations for a graph with 1 vertex::
98+
99+ sage: list(Graph(1).acyclic_orientations())
100+ [Graph on 0 vertices]
101+
102+ To count the number of acyclic orientations for a graph with 2 vertices::
103+
104+ sage: list(Graph(2).acyclic_orientations())
105+ [Graph on 0 vertices]
106+
85107 Acyclic orientations of a complete graph::
86108
87109 sage: g = graphs.CompleteGraph(5)
88110 sage: it = g.acyclic_orientations()
89111 sage: len(list(it))
90112 120
91113
92- Test for arbitary vertex labels::
114+ Graph with one edge::
115+
116+ sage: list(Graph([(0, 1)]).acyclic_orientations())
117+ [Graph on 2 vertices, Graph on 2 vertices]
118+
119+ Graph with two edges::
120+
121+ sage: len(list(Graph([(0, 1), (1, 2)]).acyclic_orientations()))
122+ 4
123+
124+ Cycle graph::
125+
126+ sage: len(list(Graph([(0, 1), (1, 2), (2, 0)]).acyclic_orientations()))
127+ 6
93128
94- sage: g_str = Graph([('abc', 'def'), ('ghi', 'def'), ('xyz', 'abc'), ('xyz', 'uvw'), ('uvw', 'abc'), ('uvw', 'ghi')])
95- sage: it = g_str.acyclic_orientations()
96- sage: len(list(it))
97- 42
98129 """
99130 from sage .rings .infinity import Infinity
100131 from sage .combinat .subset import Subsets
0 commit comments