@@ -28,6 +28,8 @@ to be a forest, symmetric, or graded. However, it may have other
2828structure, such as not containing an oriented cycle, that does not
2929help with the enumeration.
3030
31+ EXAMPLES:
32+
3133In this example, the seed is 0 and the successor function is either ``+ 2``
3234or ``+ 3``. This is the set of non negative linear combinations of 2 and 3::
3335
@@ -53,7 +55,9 @@ Symmetric structure
5355
5456The origin ``( 0, 0) `` as seed and the upper, lower, left and right lattice
5557point as successor function. This function is symmetric since `p` is a
56- successor of `q` if and only if `q` is a successor or `p`::
58+ successor of `q` if and only if `q` is a successor or `p`:
59+
60+ EXAMPLES::
5761
5862 sage: succ = lambda a: [(a[0 ]-1,a[1 ]), ( a[0 ],a[1 ]-1) , ( a[0 ]+ 1,a[1 ]) , ( a[0 ],a[1 ]+ 1) ]
5963 sage: seeds = [(0,0) ]
@@ -88,7 +92,9 @@ Graded structure
8892----------------
8993
9094Identity permutation as seed and ``permutohedron_succ`` as successor
91- function::
95+ function:
96+
97+ EXAMPLES::
9298
9399 sage: succ = attrcall( "permutohedron_succ")
94100 sage: seed = [Permutation([1..5 ])]
@@ -138,6 +144,8 @@ Graded components (set of elements of the same depth)::
138144Forest structure
139145----------------
140146
147+ EXAMPLES:
148+
141149The set of words over the alphabet `\{ a,b\} ` can be generated from the
142150empty word by appending the letter `a` or `b` as a successor function. This set
143151has a forest structure::
@@ -160,10 +168,7 @@ Breadth first search iterator::
160168 sage: [next(it) for _ in range(6) ]
161169 ['', 'a', 'b', 'aa', 'ab', 'ba' ]
162170
163- Example: Forest structure
164- -------------------------
165-
166- This example was provided by Florent Hivert.
171+ The following example of Forest structure was provided by Florent Hivert.
167172
168173How to define a set using those classes?
169174
@@ -229,10 +234,7 @@ or::
229234 sage: S. list( )
230235 ['', 'a', 'aa', 'ab', 'ac', 'b', 'ba', 'bb', 'bc', 'c', 'ca', 'cb', 'cc' ]
231236
232- Example: Forest structure 2
233- ---------------------------
234-
235- This example was provided by Florent Hivert.
237+ The following example of Forest structure was provided by Florent Hivert.
236238
237239Here is a little more involved example. We want to iterate through all
238240permutations of a given set `S`. One solution is to take elements of `S` one
@@ -386,7 +388,7 @@ def RecursivelyEnumeratedSet(seeds, successors, structure=None,
386388
387389 .. WARNING::
388390
389- If you do not set a valid structure, you might obtain bad results,
391+ If you do not set a good structure, you might obtain bad results,
390392 like elements generated twice::
391393
392394 sage: f = lambda a: [a-1,a+1 ]
@@ -1554,9 +1556,9 @@ def search_forest_iterator(roots, children, algorithm='depth'):
15541556 [0, 1, 2 ], [0, 2, 1 ], [1, 0, 2 ], [1, 2, 0 ], [2, 0, 1 ], [2, 1, 0 ]]
15551557 """
15561558 # Little trick: the same implementation handles both depth and
1557- # breadth first search. Setting position to -1 initiates a depth search
1559+ # breadth first search. Setting position to -1 results in a depth search
15581560 # (you ask the children for the last node you met). Setting
1559- # position on 0 initiates a breadth search (enumerate all the
1561+ # position on 0 results in a breadth search (enumerate all the
15601562 # descendants of a node before going on to the next father)
15611563 if algorithm == ' depth' :
15621564 position = - 1
@@ -1690,6 +1692,8 @@ class RecursivelyEnumeratedSet_forest(Parent):
16901692 recover the corresponding integers, and discard tuples finishing
16911693 by zero.
16921694
1695+ EXAMPLES:
1696+
16931697 A first approach is to pass the ``roots`` and ``children``
16941698 functions as arguments to :meth:`RecursivelyEnumeratedSet_forest. __init__`::
16951699
0 commit comments