From c23d929aa6be6304496ef4613285163728efb265 Mon Sep 17 00:00:00 2001 From: hrshya Date: Tue, 13 Jan 2026 18:45:40 +0530 Subject: [PATCH] bench: update random value generation --- .../invgamma/ctor/benchmark/benchmark.js | 205 +++++++++--------- 1 file changed, 101 insertions(+), 104 deletions(-) diff --git a/lib/node_modules/@stdlib/stats/base/dists/invgamma/ctor/benchmark/benchmark.js b/lib/node_modules/@stdlib/stats/base/dists/invgamma/ctor/benchmark/benchmark.js index f284010ffcf3..296ca2b33c8e 100644 --- a/lib/node_modules/@stdlib/stats/base/dists/invgamma/ctor/benchmark/benchmark.js +++ b/lib/node_modules/@stdlib/stats/base/dists/invgamma/ctor/benchmark/benchmark.js @@ -21,8 +21,7 @@ // MODULES // var bench = require( '@stdlib/bench' ); -var Float64Array = require( '@stdlib/array/float64' ); -var uniform = require( '@stdlib/random/base/uniform' ); +var uniform = require( '@stdlib/random/array/uniform' ); var isnan = require( '@stdlib/math/base/assert/is-nan' ); var EPS = require( '@stdlib/constants/float64/eps' ); var pkg = require( './../package.json' ).name; @@ -35,20 +34,18 @@ bench( pkg+'::instantiation', function benchmark( b ) { var alpha; var beta; var dist; - var len; + var opts; var i; - len = 100; - alpha = new Float64Array( len ); - beta = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - alpha[ i ] = uniform( EPS, 10.0 ); - beta[ i ] = uniform( EPS, 10.0 ); - } + opts = { + 'dtype': 'float64' + }; + alpha = uniform( 100, EPS, 10.0, opts ); + beta = uniform( 100, EPS, 10.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist = new InvGamma( alpha[ i % len ], beta[ i % len ] ); + dist = new InvGamma( alpha[ i % alpha.length ], beta[ i % beta.length ] ); if ( !( dist instanceof InvGamma ) ) { b.fail( 'should return a distribution instance' ); } @@ -91,23 +88,23 @@ bench( pkg+'::set:alpha', function benchmark( b ) { var alpha; var beta; var dist; - var len; + var opts; var y; var i; alpha = 10.332; beta = 15.54321; - len = 100; dist = new InvGamma( alpha, beta ); - y = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - y[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + y = uniform( 100, EPS, 100.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist.alpha = y[ i % len ]; - if ( dist.alpha !== y[ i % len ] ) { + dist.alpha = y[ i % y.length ]; + if ( dist.alpha !== y[ i % y.length ] ) { b.fail( 'should return set value' ); } } @@ -149,23 +146,23 @@ bench( pkg+'::set:beta', function benchmark( b ) { var alpha; var beta; var dist; - var len; + var opts; var y; var i; alpha = 10.332; beta = 15.54321; - len = 100; dist = new InvGamma( alpha, beta ); - y = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - y[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + y = uniform( 100, EPS, 100.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist.beta = y[ i % len ]; - if ( dist.beta !== y[ i % len ] ) { + dist.beta = y[ i % y.length ]; + if ( dist.beta !== y[ i % y.length ] ) { b.fail( 'should return set value' ); } } @@ -181,23 +178,23 @@ bench( pkg+':entropy', function benchmark( b ) { var alpha; var beta; var dist; - var len; + var opts; var x; var y; var i; alpha = 10.332; beta = 15.54321; - len = 100; dist = new InvGamma( alpha, beta ); - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS, 100.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist.alpha = x[ i % len ]; + dist.alpha = x[ i % x.length ]; y = dist.entropy; if ( isnan( y ) ) { b.fail( 'should not return NaN' ); @@ -215,23 +212,23 @@ bench( pkg+':kurtosis', function benchmark( b ) { var alpha; var beta; var dist; - var len; + var opts; var x; var y; var i; alpha = 10.332; beta = 15.54321; - len = 100; dist = new InvGamma( alpha, beta ); - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( 4.0 + EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS + 4.0, 100.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist.alpha = x[ i % len ]; + dist.alpha = x[ i % x.length ]; y = dist.kurtosis; if ( isnan( y ) ) { b.fail( 'should not return NaN' ); @@ -249,23 +246,23 @@ bench( pkg+':mean', function benchmark( b ) { var alpha; var beta; var dist; - var len; + var opts; var x; var y; var i; alpha = 10.332; beta = 15.54321; - len = 100; dist = new InvGamma( alpha, beta ); - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( 1.0 + EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS + 1.0, 100.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist.alpha = x[ i % len ]; + dist.alpha = x[ i % x.length ]; y = dist.mean; if ( isnan( y ) ) { b.fail( 'should not return NaN' ); @@ -283,23 +280,23 @@ bench( pkg+':mode', function benchmark( b ) { var alpha; var beta; var dist; - var len; + var opts; var x; var y; var i; alpha = 10.332; beta = 15.54321; - len = 100; dist = new InvGamma( alpha, beta ); - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS, 100.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist.alpha = x[ i % len ]; + dist.alpha = x[ i % x.length ]; y = dist.mode; if ( isnan( y ) ) { b.fail( 'should not return NaN' ); @@ -317,23 +314,23 @@ bench( pkg+':skewness', function benchmark( b ) { var alpha; var beta; var dist; - var len; + var opts; var x; var y; var i; alpha = 10.332; beta = 15.54321; - len = 100; dist = new InvGamma( alpha, beta ); - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( 3.0 + EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS + 3.0, 100.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist.alpha = x[ i % len ]; + dist.alpha = x[ i % x.length ]; y = dist.skewness; if ( isnan( y ) ) { b.fail( 'should not return NaN' ); @@ -351,23 +348,23 @@ bench( pkg+':stdev', function benchmark( b ) { var alpha; var beta; var dist; - var len; + var opts; var x; var y; var i; alpha = 10.332; beta = 15.54321; - len = 100; dist = new InvGamma( alpha, beta ); - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( 2.0 + EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS + 2.0, 100.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist.alpha = x[ i % len ]; + dist.alpha = x[ i % x.length ]; y = dist.stdev; if ( isnan( y ) ) { b.fail( 'should not return NaN' ); @@ -385,23 +382,23 @@ bench( pkg+':variance', function benchmark( b ) { var alpha; var beta; var dist; - var len; + var opts; var x; var y; var i; alpha = 10.332; beta = 15.54321; - len = 100; dist = new InvGamma( alpha, beta ); - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( 2.0 + EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS + 2.0, 100.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist.alpha = x[ i % len ]; + dist.alpha = x[ i % x.length ]; y = dist.variance; if ( isnan( y ) ) { b.fail( 'should not return NaN' ); @@ -419,23 +416,23 @@ bench( pkg+':cdf', function benchmark( b ) { var alpha; var beta; var dist; - var len; + var opts; var x; var y; var i; alpha = 10.332; beta = 15.54321; - len = 100; dist = new InvGamma( alpha, beta ); - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( 0.0, 1.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, 0.0, 1.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - y = dist.cdf( x[ i % len ] ); + y = dist.cdf( x[ i % x.length ] ); if ( isnan( y ) ) { b.fail( 'should not return NaN' ); } @@ -452,23 +449,23 @@ bench( pkg+':logpdf', function benchmark( b ) { var alpha; var beta; var dist; - var len; + var opts; var x; var y; var i; alpha = 10.332; beta = 15.54321; - len = 100; dist = new InvGamma( alpha, beta ); - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( 0.0, 1.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, 0.0, 1.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - y = dist.logpdf( x[ i % len ] ); + y = dist.logpdf( x[ i % x.length ] ); if ( isnan( y ) ) { b.fail( 'should not return NaN' ); } @@ -485,23 +482,23 @@ bench( pkg+':pdf', function benchmark( b ) { var alpha; var beta; var dist; - var len; + var opts; var x; var y; var i; alpha = 10.332; beta = 15.54321; - len = 100; dist = new InvGamma( alpha, beta ); - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( 0.0, 1.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, 0.0, 1.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - y = dist.pdf( x[ i % len ] ); + y = dist.pdf( x[ i % x.length ] ); if ( isnan( y ) ) { b.fail( 'should not return NaN' ); } @@ -518,23 +515,23 @@ bench( pkg+':quantile', function benchmark( b ) { var alpha; var beta; var dist; - var len; + var opts; var x; var y; var i; alpha = 10.332; beta = 15.54321; - len = 100; dist = new InvGamma( alpha, beta ); - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( 0.0, 1.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, 0.0, 1.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - y = dist.quantile( x[ i % len ] ); + y = dist.quantile( x[ i % x.length ] ); if ( isnan( y ) ) { b.fail( 'should not return NaN' ); }