From fbe1c1a09f437a248e8eeee7ad379d78b71c7830 Mon Sep 17 00:00:00 2001 From: hrshya Date: Fri, 16 Jan 2026 17:44:13 +0530 Subject: [PATCH] bench: update random value generation --- .../lognormal/ctor/benchmark/benchmark.js | 219 +++++++++--------- 1 file changed, 108 insertions(+), 111 deletions(-) diff --git a/lib/node_modules/@stdlib/stats/base/dists/lognormal/ctor/benchmark/benchmark.js b/lib/node_modules/@stdlib/stats/base/dists/lognormal/ctor/benchmark/benchmark.js index 99d3bf74fa48..f86b6519754f 100644 --- a/lib/node_modules/@stdlib/stats/base/dists/lognormal/ctor/benchmark/benchmark.js +++ b/lib/node_modules/@stdlib/stats/base/dists/lognormal/ctor/benchmark/benchmark.js @@ -21,8 +21,7 @@ // MODULES // var bench = require( '@stdlib/bench' ); -var uniform = require( '@stdlib/random/base/uniform' ); -var Float64Array = require( '@stdlib/array/float64' ); +var uniform = require( '@stdlib/random/array/uniform' ); var isnan = require( '@stdlib/math/base/assert/is-nan' ); var EPS = require( '@stdlib/constants/float64/eps' ); var pkg = require( './../package.json' ).name; @@ -34,21 +33,19 @@ var LogNormal = require( './../lib' ); bench( pkg+'::instantiation', function benchmark( b ) { var sigma; var dist; - var len; + var opts; var mu; var i; - len = 100; - mu = new Float64Array( len ); - sigma = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - mu[ i ] = uniform( EPS, 10.0 ); - sigma[ i ] = uniform( EPS, 10.0 ); - } + opts = { + 'dtype': 'float64' + }; + mu = uniform( 100, EPS, 10.0, opts ); + sigma = uniform( 100, EPS, 10.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist = new LogNormal( mu[ i % len ], sigma[ i % len ] ); + dist = new LogNormal( mu[ i % mu.length ], sigma[ i % sigma.length ] ); if ( !( dist instanceof LogNormal ) ) { b.fail( 'should return a distribution instance' ); } @@ -90,7 +87,7 @@ bench( pkg+'::get:mu', function benchmark( b ) { bench( pkg+'::set:mu', function benchmark( b ) { var sigma; var dist; - var len; + var opts; var mu; var y; var i; @@ -98,16 +95,16 @@ bench( pkg+'::set:mu', function benchmark( b ) { mu = 2.0; sigma = 3.0; dist = new LogNormal( mu, sigma ); - len = 100; - y = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - y[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + y = uniform( 100, EPS, 100.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist.mu = y[ i % len ]; - if ( dist.mu !== y[ i % len ] ) { + dist.mu = y[ i % y.length ]; + if ( dist.mu !== y[ i % y.length ] ) { b.fail( 'should return set value' ); } } @@ -148,7 +145,7 @@ bench( pkg+'::get:sigma', function benchmark( b ) { bench( pkg+'::set:sigma', function benchmark( b ) { var sigma; var dist; - var len; + var opts; var mu; var y; var i; @@ -156,16 +153,16 @@ bench( pkg+'::set:sigma', function benchmark( b ) { mu = 2.0; sigma = 3.0; dist = new LogNormal( mu, sigma ); - len = 100; - y = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - y[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + y = uniform( 100, EPS, 100.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist.sigma = y[ i % len ]; - if ( dist.sigma !== y[ i % len ] ) { + dist.sigma = y[ i % y.length ]; + if ( dist.sigma !== y[ i % y.length ] ) { b.fail( 'should return set value' ); } } @@ -180,7 +177,7 @@ bench( pkg+'::set:sigma', function benchmark( b ) { bench( pkg+':entropy', function benchmark( b ) { var sigma; var dist; - var len; + var opts; var mu; var x; var y; @@ -189,15 +186,15 @@ bench( pkg+':entropy', function benchmark( b ) { mu = 2.0; sigma = 3.0; dist = new LogNormal( mu, sigma ); - len = 100; - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS, 100.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist.mu = x[ i % len ]; + dist.mu = x[ i % x.length ]; y = dist.entropy; if ( isnan( y ) ) { b.fail( 'should not return NaN' ); @@ -214,7 +211,7 @@ bench( pkg+':entropy', function benchmark( b ) { bench( pkg+':kurtosis', function benchmark( b ) { var sigma; var dist; - var len; + var opts; var mu; var x; var y; @@ -223,15 +220,15 @@ bench( pkg+':kurtosis', function benchmark( b ) { mu = 2.0; sigma = 3.0; dist = new LogNormal( mu, sigma ); - len = 100; - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS, 100.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist.mu = x[ i % len ]; + dist.mu = x[ i % x.length ]; y = dist.kurtosis; if ( isnan( y ) ) { b.fail( 'should not return NaN' ); @@ -248,7 +245,7 @@ bench( pkg+':kurtosis', function benchmark( b ) { bench( pkg+':mean', function benchmark( b ) { var sigma; var dist; - var len; + var opts; var mu; var x; var y; @@ -257,15 +254,15 @@ bench( pkg+':mean', function benchmark( b ) { mu = 2.0; sigma = 3.0; dist = new LogNormal( mu, sigma ); - len = 100; - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS, 100.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist.mu = x[ i % len ]; + dist.mu = x[ i % x.length ]; y = dist.mean; if ( isnan( y ) ) { b.fail( 'should not return NaN' ); @@ -282,7 +279,7 @@ bench( pkg+':mean', function benchmark( b ) { bench( pkg+':median', function benchmark( b ) { var sigma; var dist; - var len; + var opts; var mu; var x; var y; @@ -291,15 +288,15 @@ bench( pkg+':median', function benchmark( b ) { mu = 2.0; sigma = 3.0; dist = new LogNormal( mu, sigma ); - len = 100; - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS, 100.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist.mu = x[ i % len ]; + dist.mu = x[ i % x.length ]; y = dist.median; if ( isnan( y ) ) { b.fail( 'should not return NaN' ); @@ -316,7 +313,7 @@ bench( pkg+':median', function benchmark( b ) { bench( pkg+':mode', function benchmark( b ) { var sigma; var dist; - var len; + var opts; var mu; var x; var y; @@ -325,15 +322,15 @@ bench( pkg+':mode', function benchmark( b ) { mu = 2.0; sigma = 3.0; dist = new LogNormal( mu, sigma ); - len = 100; - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( 1.0 + EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS + 1.0, 100.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist.mu = x[ i % len ]; + dist.mu = x[ i % x.length ]; y = dist.mode; if ( isnan( y ) ) { b.fail( 'should not return NaN' ); @@ -350,7 +347,7 @@ bench( pkg+':mode', function benchmark( b ) { bench( pkg+':skewness', function benchmark( b ) { var sigma; var dist; - var len; + var opts; var mu; var x; var y; @@ -359,15 +356,15 @@ bench( pkg+':skewness', function benchmark( b ) { mu = 2.0; sigma = 3.0; dist = new LogNormal( mu, sigma ); - len = 100; - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS, 100.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist.mu = x[ i % len ]; + dist.mu = x[ i % x.length ]; y = dist.skewness; if ( isnan( y ) ) { b.fail( 'should not return NaN' ); @@ -384,7 +381,7 @@ bench( pkg+':skewness', function benchmark( b ) { bench( pkg+':stdev', function benchmark( b ) { var sigma; var dist; - var len; + var opts; var mu; var x; var y; @@ -393,15 +390,15 @@ bench( pkg+':stdev', function benchmark( b ) { mu = 2.0; sigma = 3.0; dist = new LogNormal( mu, sigma ); - len = 100; - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS, 100.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist.mu = x[ i % len ]; + dist.mu = x[ i % x.length ]; y = dist.stdev; if ( isnan( y ) ) { b.fail( 'should not return NaN' ); @@ -418,7 +415,7 @@ bench( pkg+':stdev', function benchmark( b ) { bench( pkg+':variance', function benchmark( b ) { var sigma; var dist; - var len; + var opts; var mu; var x; var y; @@ -427,15 +424,15 @@ bench( pkg+':variance', function benchmark( b ) { mu = 2.0; sigma = 3.0; dist = new LogNormal( mu, sigma ); - len = 100; - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS, 100.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - dist.mu = x[ i % len ]; + dist.mu = x[ i % x.length ]; y = dist.variance; if ( isnan( y ) ) { b.fail( 'should not return NaN' ); @@ -452,7 +449,7 @@ bench( pkg+':variance', function benchmark( b ) { bench( pkg+':cdf', function benchmark( b ) { var sigma; var dist; - var len; + var opts; var mu; var x; var y; @@ -461,15 +458,15 @@ bench( pkg+':cdf', function benchmark( b ) { mu = 2.0; sigma = 3.0; dist = new LogNormal( mu, sigma ); - len = 100; - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( -3.0, 3.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, -3.0, 3.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - y = dist.cdf( x[ i % len ] ); + y = dist.cdf( x[ i % x.length ] ); if ( isnan( y ) ) { b.fail( 'should not return NaN' ); } @@ -485,7 +482,7 @@ bench( pkg+':cdf', function benchmark( b ) { bench( pkg+':logpdf', function benchmark( b ) { var sigma; var dist; - var len; + var opts; var mu; var x; var y; @@ -494,15 +491,15 @@ bench( pkg+':logpdf', function benchmark( b ) { mu = 2.0; sigma = 3.0; dist = new LogNormal( mu, sigma ); - len = 100; - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( -3.0, 3.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, -3.0, 3.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - y = dist.logpdf( x[ i % len ] ); + y = dist.logpdf( x[ i % x.length ] ); if ( isnan( y ) ) { b.fail( 'should not return NaN' ); } @@ -518,7 +515,7 @@ bench( pkg+':logpdf', function benchmark( b ) { bench( pkg+':pdf', function benchmark( b ) { var sigma; var dist; - var len; + var opts; var mu; var x; var y; @@ -527,15 +524,15 @@ bench( pkg+':pdf', function benchmark( b ) { mu = 2.0; sigma = 3.0; dist = new LogNormal( mu, sigma ); - len = 100; - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( -3.0, 3.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, -3.0, 3.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - y = dist.pdf( x[ i % len ] ); + y = dist.pdf( x[ i % x.length ] ); if ( isnan( y ) ) { b.fail( 'should not return NaN' ); } @@ -551,7 +548,7 @@ bench( pkg+':pdf', function benchmark( b ) { bench( pkg+':quantile', function benchmark( b ) { var sigma; var dist; - var len; + var opts; var mu; var x; var y; @@ -560,15 +557,15 @@ bench( pkg+':quantile', function benchmark( b ) { mu = 2.0; sigma = 3.0; dist = new LogNormal( mu, sigma ); - len = 100; - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( 0.0, 1.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, 0.0, 1.0, opts ); b.tic(); for ( i = 0; i < b.iterations; i++ ) { - y = dist.quantile( x[ i % len ] ); + y = dist.quantile( x[ i % x.length ] ); if ( isnan( y ) ) { b.fail( 'should not return NaN' ); }