diff --git a/lib/node_modules/@stdlib/ndarray/base/README.md b/lib/node_modules/@stdlib/ndarray/base/README.md
index f5737b30f9b0..7ffc007d37ac 100644
--- a/lib/node_modules/@stdlib/ndarray/base/README.md
+++ b/lib/node_modules/@stdlib/ndarray/base/README.md
@@ -58,6 +58,7 @@ var o = ns;
- [`broadcastArrayExceptDimensions( arr, shape, dims )`][@stdlib/ndarray/base/broadcast-array-except-dimensions]: broadcast an input ndarray to a target shape while keeping a list of specified dimensions unchanged.
- [`broadcastArray( arr, shape )`][@stdlib/ndarray/base/broadcast-array]: broadcast an ndarray to a specified shape.
- [`broadcastArrays( arrays )`][@stdlib/ndarray/base/broadcast-arrays]: broadcast ndarrays to a common shape.
+- [`broadcastScalarLike( x, value )`][@stdlib/ndarray/base/broadcast-scalar-like]: broadcast a scalar value to an ndarray having the same shape and data type as a provided input ndarray.
- [`broadcastScalar( value, dtype, shape, order )`][@stdlib/ndarray/base/broadcast-scalar]: broadcast a scalar value to an ndarray having a specified shape.
- [`broadcastShapes( shapes )`][@stdlib/ndarray/base/broadcast-shapes]: broadcast array shapes to a single shape.
- [`bufferCtors( dtype )`][@stdlib/ndarray/base/buffer-ctors]: ndarray data buffer constructors.
@@ -148,6 +149,8 @@ var o = ns;
- [`pop( x, dim, writable )`][@stdlib/ndarray/base/pop]: return an array containing a truncated view of an input ndarray and a view of the last element(s) along a specified dimension.
- [`prependSingletonDimensions( x, n, writable )`][@stdlib/ndarray/base/prepend-singleton-dimensions]: prepend singleton dimensions.
- [`promoteDataTypes( dtypes )`][@stdlib/ndarray/base/promote-dtypes]: resolve the data type that results from applying promotion rules to a provided list of data types.
+- [`quaternaryLoopOrder( shape, stridesX, stridesY, stridesZ, stridesW, stridesU )`][@stdlib/ndarray/base/quaternary-loop-interchange-order]: reorder ndarray dimensions and associated strides for loop interchange.
+- [`quinaryLoopOrder( shape, stridesX, stridesY, stridesZ, stridesW, stridesU, stridesV )`][@stdlib/ndarray/base/quinary-loop-interchange-order]: reorder ndarray dimensions and associated strides for loop interchange.
- [`removeSingletonDimensions( x )`][@stdlib/ndarray/base/remove-singleton-dimensions]: remove singleton dimensions.
- [`reverseDimension( x, dim, writable )`][@stdlib/ndarray/base/reverse-dimension]: return a view of an input ndarray in which the order of elements along a specified dimension is reversed.
- [`reverse( x, writable )`][@stdlib/ndarray/base/reverse]: return a view of an input ndarray in which the order of elements along each dimension is reversed.
@@ -294,6 +297,8 @@ console.log( objectKeys( ns ) );
[@stdlib/ndarray/base/broadcast-arrays]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/ndarray/base/broadcast-arrays
+[@stdlib/ndarray/base/broadcast-scalar-like]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/ndarray/base/broadcast-scalar-like
+
[@stdlib/ndarray/base/broadcast-scalar]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/ndarray/base/broadcast-scalar
[@stdlib/ndarray/base/broadcast-shapes]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/ndarray/base/broadcast-shapes
@@ -474,6 +479,10 @@ console.log( objectKeys( ns ) );
[@stdlib/ndarray/base/promote-dtypes]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/ndarray/base/promote-dtypes
+[@stdlib/ndarray/base/quaternary-loop-interchange-order]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/ndarray/base/quaternary-loop-interchange-order
+
+[@stdlib/ndarray/base/quinary-loop-interchange-order]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/ndarray/base/quinary-loop-interchange-order
+
[@stdlib/ndarray/base/remove-singleton-dimensions]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/ndarray/base/remove-singleton-dimensions
[@stdlib/ndarray/base/reverse-dimension]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/ndarray/base/reverse-dimension
diff --git a/lib/node_modules/@stdlib/stats/base/ndarray/README.md b/lib/node_modules/@stdlib/stats/base/ndarray/README.md
index 1f8fcd282391..b5acbbd16b7f 100644
--- a/lib/node_modules/@stdlib/stats/base/ndarray/README.md
+++ b/lib/node_modules/@stdlib/stats/base/ndarray/README.md
@@ -62,11 +62,19 @@ The namespace exposes the following APIs:
- [`dmeankbn2( arrays )`][@stdlib/stats/base/ndarray/dmeankbn2]: compute the arithmetic mean of a one-dimensional double-precision floating-point ndarray using a second-order iterative Kahan–Babuška algorithm.
- [`dmeanli( arrays )`][@stdlib/stats/base/ndarray/dmeanli]: compute the arithmetic mean of a one-dimensional double-precision floating-point ndarray using a one-pass trial mean algorithm.
- [`dmeanlipw( arrays )`][@stdlib/stats/base/ndarray/dmeanlipw]: compute the arithmetic mean of a one-dimensional double-precision floating-point ndarray using a one-pass trial mean algorithm with pairwise summation.
+- [`dmeanors( arrays )`][@stdlib/stats/base/ndarray/dmeanors]: compute the arithmetic mean of a one-dimensional double-precision floating-point ndarray using ordinary recursive summation.
- [`dmeanpn( arrays )`][@stdlib/stats/base/ndarray/dmeanpn]: compute the arithmetic mean of a one-dimensional double-precision floating-point ndarray using a two-pass error correction algorithm.
- [`dmeanpw( arrays )`][@stdlib/stats/base/ndarray/dmeanpw]: compute the arithmetic mean of a one-dimensional double-precision floating-point ndarray using pairwise summation.
+- [`dmeanstdev( arrays )`][@stdlib/stats/base/ndarray/dmeanstdev]: compute the arithmetic mean and standard deviation of a one-dimensional double-precision floating-point ndarray.
+- [`dmeanwd( arrays )`][@stdlib/stats/base/ndarray/dmeanwd]: compute the arithmetic mean of a one-dimensional double-precision floating-point ndarray using Welford's algorithm.
+- [`dmediansorted( arrays )`][@stdlib/stats/base/ndarray/dmediansorted]: compute the median value of a sorted one-dimensional double-precision floating-point ndarray.
+- [`dmidrange( arrays )`][@stdlib/stats/base/ndarray/dmidrange]: compute the mid-range of a one-dimensional double-precision floating-point ndarray.
- [`dmin( arrays )`][@stdlib/stats/base/ndarray/dmin]: compute the minimum value of a one-dimensional double-precision floating-point ndarray.
- [`dminabs( arrays )`][@stdlib/stats/base/ndarray/dminabs]: compute the minimum absolute value of a one-dimensional double-precision floating-point ndarray.
- [`dminsorted( arrays )`][@stdlib/stats/base/ndarray/dminsorted]: compute the minimum value of a sorted one-dimensional double-precision floating-point ndarray.
+- [`dmskmax( arrays )`][@stdlib/stats/base/ndarray/dmskmax]: calculate the maximum value of a one-dimensional double-precision floating-point ndarray according to a mask.
+- [`dmskmin( arrays )`][@stdlib/stats/base/ndarray/dmskmin]: calculate the minimum value of a one-dimensional double-precision floating-point ndarray according to a mask.
+- [`dmskrange( arrays )`][@stdlib/stats/base/ndarray/dmskrange]: calculate the range of a one-dimensional double-precision floating-point ndarray according to a mask.
- [`dnanmax( arrays )`][@stdlib/stats/base/ndarray/dnanmax]: compute the maximum value of a one-dimensional double-precision floating-point ndarray, ignoring `NaN` values.
- [`dnanmaxabs( arrays )`][@stdlib/stats/base/ndarray/dnanmaxabs]: compute the maximum absolute value of a one-dimensional double-precision floating-point ndarray, ignoring `NaN` values.
- [`dnanmean( arrays )`][@stdlib/stats/base/ndarray/dnanmean]: compute the arithmetic mean of a one-dimensional double-precision floating-point ndarray, ignoring `NaN` values.
@@ -74,9 +82,18 @@ The namespace exposes the following APIs:
- [`dnanmeanpn( arrays )`][@stdlib/stats/base/ndarray/dnanmeanpn]: compute the arithmetic mean of a one-dimensional double-precision floating-point ndarray, ignoring `NaN` values and using a two-pass error correction algorithm.
- [`dnanmeanpw( arrays )`][@stdlib/stats/base/ndarray/dnanmeanpw]: compute the arithmetic mean of a one-dimensional double-precision floating-point ndarray, ignoring `NaN` values and using pairwise summation.
- [`dnanmeanwd( arrays )`][@stdlib/stats/base/ndarray/dnanmeanwd]: compute the arithmetic mean of a one-dimensional double-precision floating-point ndarray, ignoring `NaN` values and using Welford's algorithm.
+- [`dnanmidrange( arrays )`][@stdlib/stats/base/ndarray/dnanmidrange]: compute the mid-range of a one-dimensional double-precision floating-point ndarray, ignoring `NaN` values.
- [`dnanmin( arrays )`][@stdlib/stats/base/ndarray/dnanmin]: compute the minimum value of a one-dimensional double-precision floating-point ndarray, ignoring `NaN` values.
- [`dnanminabs( arrays )`][@stdlib/stats/base/ndarray/dnanminabs]: compute the minimum absolute value of a one-dimensional double-precision floating-point ndarray, ignoring `NaN` values.
+- [`dnanmskmax( arrays )`][@stdlib/stats/base/ndarray/dnanmskmax]: compute the maximum value of a double-precision floating-point ndarray according to a mask, ignoring `NaN` values.
+- [`dnanmskmin( arrays )`][@stdlib/stats/base/ndarray/dnanmskmin]: compute the minimum value of a double-precision floating-point ndarray according to a mask, ignoring `NaN` values.
+- [`dnanmskrange( arrays )`][@stdlib/stats/base/ndarray/dnanmskrange]: calculate the range of a one-dimensional double-precision floating-point ndarray according to a mask, ignoring `NaN` values.
+- [`dnanrange( arrays )`][@stdlib/stats/base/ndarray/dnanrange]: compute the range of a one-dimensional double-precision floating-point ndarray, ignoring `NaN` values.
- [`drange( arrays )`][@stdlib/stats/base/ndarray/drange]: compute the range of a one-dimensional double-precision floating-point ndarray.
+- [`dstdev( arrays )`][@stdlib/stats/base/ndarray/dstdev]: calculate the standard deviation of a one-dimensional double-precision floating-point ndarray.
+- [`dstdevch( arrays )`][@stdlib/stats/base/ndarray/dstdevch]: calculate the standard deviation of a one-dimensional double-precision floating-point ndarray using a one-pass trial mean algorithm.
+- [`dstdevpn( arrays )`][@stdlib/stats/base/ndarray/dstdevpn]: calculate the standard deviation of a one-dimensional double-precision floating-point ndarray using a two-pass algorithm.
+- [`dstdevwd( arrays )`][@stdlib/stats/base/ndarray/dstdevwd]: calculate the standard deviation of a one-dimensional double-precision floating-point ndarray using Welford's algorithm.
- [`dztest( arrays )`][@stdlib/stats/base/ndarray/dztest]: compute a one-sample Z-test for a one-dimensional double-precision floating-point ndarray.
- [`dztest2( arrays )`][@stdlib/stats/base/ndarray/dztest2]: compute a two-sample Z-test for two one-dimensional double-precision floating-point ndarrays.
- [`maxBy( arrays, clbk[, thisArg ] )`][@stdlib/stats/base/ndarray/max-by]: compute the maximum value of a one-dimensional ndarray via a callback function.
@@ -91,20 +108,33 @@ The namespace exposes the following APIs:
- [`meanpw( arrays )`][@stdlib/stats/base/ndarray/meanpw]: compute the arithmetic mean of a one-dimensional ndarray using pairwise summation.
- [`meanwd( arrays )`][@stdlib/stats/base/ndarray/meanwd]: compute the arithmetic mean of a one-dimensional ndarray using Welford's algorithm.
- [`mediansorted( arrays )`][@stdlib/stats/base/ndarray/mediansorted]: compute the median value of a sorted one-dimensional ndarray.
+- [`midrangeBy( arrays, clbk[, thisArg ] )`][@stdlib/stats/base/ndarray/midrange-by]: calculate the mid-range of a one-dimensional ndarray via a callback function.
+- [`midrange( arrays )`][@stdlib/stats/base/ndarray/midrange]: compute the mid-range of a one-dimensional ndarray.
- [`minBy( arrays, clbk[, thisArg ] )`][@stdlib/stats/base/ndarray/min-by]: compute the minimum value of a one-dimensional ndarray via a callback function.
- [`min( arrays )`][@stdlib/stats/base/ndarray/min]: compute the minimum value of a one-dimensional ndarray.
- [`minabs( arrays )`][@stdlib/stats/base/ndarray/minabs]: compute the minimum absolute value of a one-dimensional ndarray.
- [`minsorted( arrays )`][@stdlib/stats/base/ndarray/minsorted]: compute the minimum value of a sorted one-dimensional ndarray.
- [`mskmax( arrays )`][@stdlib/stats/base/ndarray/mskmax]: calculate the maximum value of a one-dimensional ndarray according to a mask.
+- [`mskmidrange( arrays )`][@stdlib/stats/base/ndarray/mskmidrange]: calculate the mid-range of a one-dimensional ndarray according to a mask.
- [`mskmin( arrays )`][@stdlib/stats/base/ndarray/mskmin]: calculate the minimum value of a one-dimensional ndarray according to a mask.
- [`mskrange( arrays )`][@stdlib/stats/base/ndarray/mskrange]: calculate the range of a one-dimensional ndarray according to a mask.
+- [`nanmaxBy( arrays, clbk[, thisArg ] )`][@stdlib/stats/base/ndarray/nanmax-by]: compute the maximum value of a one-dimensional ndarray via a callback function, ignoring `NaN` values.
- [`nanmax( arrays )`][@stdlib/stats/base/ndarray/nanmax]: compute the maximum value of a one-dimensional ndarray, ignoring `NaN` values.
- [`nanmaxabs( arrays )`][@stdlib/stats/base/ndarray/nanmaxabs]: compute the maximum absolute value of a one-dimensional ndarray, ignoring `NaN` values.
- [`nanmean( arrays )`][@stdlib/stats/base/ndarray/nanmean]: compute the arithmetic mean of a one-dimensional ndarray, ignoring `NaN` values.
+- [`nanmeanors( arrays )`][@stdlib/stats/base/ndarray/nanmeanors]: compute the arithmetic mean of a one-dimensional ndarray, ignoring `NaN` values and using ordinary recursive summation.
- [`nanmeanpn( arrays )`][@stdlib/stats/base/ndarray/nanmeanpn]: compute the arithmetic mean of a one-dimensional ndarray, ignoring `NaN` values and using a two-pass error correction algorithm.
- [`nanmeanwd( arrays )`][@stdlib/stats/base/ndarray/nanmeanwd]: compute the arithmetic mean of a one-dimensional ndarray, ignoring `NaN` values and using Welford's algorithm.
+- [`nanmidrangeBy( arrays, clbk[, thisArg ] )`][@stdlib/stats/base/ndarray/nanmidrange-by]: calculate the mid-range of a one-dimensional ndarray via a callback function, ignoring `NaN` values.
+- [`nanmidrange( arrays )`][@stdlib/stats/base/ndarray/nanmidrange]: compute the mid-range of a one-dimensional ndarray, ignoring `NaN` values.
+- [`nanminBy( arrays, clbk[, thisArg ] )`][@stdlib/stats/base/ndarray/nanmin-by]: compute the minimum value of a one-dimensional ndarray via a callback function, ignoring `NaN` values.
- [`nanmin( arrays )`][@stdlib/stats/base/ndarray/nanmin]: compute the minimum value of a one-dimensional ndarray, ignoring `NaN` values.
- [`nanminabs( arrays )`][@stdlib/stats/base/ndarray/nanminabs]: compute the minimum absolute value of a one-dimensional ndarray, ignoring `NaN` values.
+- [`nanmskmax( arrays )`][@stdlib/stats/base/ndarray/nanmskmax]: calculate the maximum value of a one-dimensional ndarray according to a mask, ignoring `NaN` values.
+- [`nanmskmin( arrays )`][@stdlib/stats/base/ndarray/nanmskmin]: calculate the minimum value of a one-dimensional ndarray according to a mask, ignoring `NaN` values.
+- [`nanmskrange( arrays )`][@stdlib/stats/base/ndarray/nanmskrange]: calculate the range of a one-dimensional ndarray according to a mask, ignoring `NaN` values.
+- [`nanrangeBy( arrays, clbk[, thisArg ] )`][@stdlib/stats/base/ndarray/nanrange-by]: calculate the range of a one-dimensional ndarray via a callback function, ignoring `NaN` values.
+- [`nanrange( arrays )`][@stdlib/stats/base/ndarray/nanrange]: compute the range of a one-dimensional ndarray, ignoring `NaN` values.
- [`rangeBy( arrays, clbk[, thisArg ] )`][@stdlib/stats/base/ndarray/range-by]: calculate the range of a one-dimensional ndarray via a callback function.
- [`range( arrays )`][@stdlib/stats/base/ndarray/range]: compute the range of a one-dimensional ndarray.
- [`scovarmtk( arrays )`][@stdlib/stats/base/ndarray/scovarmtk]: calculate the covariance of two one-dimensional single-precision floating-point ndarrays provided known means and using a one-pass textbook algorithm.
@@ -112,6 +142,9 @@ The namespace exposes the following APIs:
- [`scumaxabs( arrays )`][@stdlib/stats/base/ndarray/scumaxabs]: compute the cumulative maximum absolute value of a one-dimensional single-precision floating-point ndarray.
- [`scumin( arrays )`][@stdlib/stats/base/ndarray/scumin]: compute the cumulative minimum value of a one-dimensional single-precision floating-point ndarray.
- [`scuminabs( arrays )`][@stdlib/stats/base/ndarray/scuminabs]: compute the cumulative minimum absolute value of a one-dimensional single-precision floating-point ndarray.
+- [`sdsmean( arrays )`][@stdlib/stats/base/ndarray/sdsmean]: compute the arithmetic mean of a one-dimensional single-precision floating-point ndarray using extended accumulation.
+- [`sdsmeanors( arrays )`][@stdlib/stats/base/ndarray/sdsmeanors]: compute the arithmetic mean of a one-dimensional single-precision floating-point ndarray using ordinary recursive summation with extended accumulation.
+- [`sdsnanmeanors( arrays )`][@stdlib/stats/base/ndarray/sdsnanmeanors]: compute the arithmetic mean of a one-dimensional single-precision floating-point ndarray, ignoring NaN values and using ordinary recursive summation with extended accumulation.
- [`smax( arrays )`][@stdlib/stats/base/ndarray/smax]: compute the maximum value of a one-dimensional single-precision floating-point ndarray.
- [`smaxabs( arrays )`][@stdlib/stats/base/ndarray/smaxabs]: compute the maximum absolute value of a one-dimensional single-precision floating-point ndarray.
- [`smaxabssorted( arrays )`][@stdlib/stats/base/ndarray/smaxabssorted]: compute the maximum absolute value of a sorted one-dimensional single-precision floating-point ndarray.
@@ -121,23 +154,48 @@ The namespace exposes the following APIs:
- [`smeankbn2( arrays )`][@stdlib/stats/base/ndarray/smeankbn2]: compute the arithmetic mean of a one-dimensional single-precision floating-point ndarray using a second-order iterative Kahan–Babuška algorithm.
- [`smeanli( arrays )`][@stdlib/stats/base/ndarray/smeanli]: compute the arithmetic mean of a one-dimensional single-precision floating-point ndarray using a one-pass trial mean algorithm.
- [`smeanlipw( arrays )`][@stdlib/stats/base/ndarray/smeanlipw]: compute the arithmetic mean of a one-dimensional single-precision floating-point ndarray using a one-pass trial mean algorithm with pairwise summation.
+- [`smeanors( arrays )`][@stdlib/stats/base/ndarray/smeanors]: compute the arithmetic mean of a one-dimensional single-precision floating-point ndarray using ordinary recursive summation.
- [`smeanpn( arrays )`][@stdlib/stats/base/ndarray/smeanpn]: compute the arithmetic mean of a one-dimensional single-precision floating-point ndarray using a two-pass error correction algorithm.
- [`smeanpw( arrays )`][@stdlib/stats/base/ndarray/smeanpw]: compute the arithmetic mean of a one-dimensional single-precision floating-point ndarray using pairwise summation.
- [`smeanwd( arrays )`][@stdlib/stats/base/ndarray/smeanwd]: compute the arithmetic mean of a one-dimensional single-precision floating-point ndarray using Welford's algorithm.
+- [`smediansorted( arrays )`][@stdlib/stats/base/ndarray/smediansorted]: compute the median value of a sorted one-dimensional single-precision floating-point ndarray.
+- [`smidrange( arrays )`][@stdlib/stats/base/ndarray/smidrange]: compute the mid-range of a one-dimensional single-precision floating-point ndarray.
- [`smin( arrays )`][@stdlib/stats/base/ndarray/smin]: compute the minimum value of a one-dimensional single-precision floating-point ndarray.
- [`sminabs( arrays )`][@stdlib/stats/base/ndarray/sminabs]: compute the minimum absolute value of a one-dimensional single-precision floating-point ndarray.
- [`sminsorted( arrays )`][@stdlib/stats/base/ndarray/sminsorted]: compute the minimum value of a sorted one-dimensional single-precision floating-point ndarray.
+- [`smskmax( arrays )`][@stdlib/stats/base/ndarray/smskmax]: calculate the maximum value of a one-dimensional single-precision floating-point ndarray according to a mask.
+- [`smskmidrange( arrays )`][@stdlib/stats/base/ndarray/smskmidrange]: calculate the mid-range of a one-dimensional single-precision floating-point ndarray according to a mask.
+- [`smskmin( arrays )`][@stdlib/stats/base/ndarray/smskmin]: calculate the minimum value of a one-dimensional single-precision floating-point ndarray according to a mask.
+- [`smskrange( arrays )`][@stdlib/stats/base/ndarray/smskrange]: calculate the range of a one-dimensional single-precision floating-point ndarray according to a mask.
- [`snanmax( arrays )`][@stdlib/stats/base/ndarray/snanmax]: compute the maximum value of a one-dimensional single-precision floating-point ndarray, ignoring `NaN` values.
- [`snanmaxabs( arrays )`][@stdlib/stats/base/ndarray/snanmaxabs]: compute the maximum absolute value of a one-dimensional single-precision floating-point ndarray, ignoring `NaN` values.
- [`snanmean( arrays )`][@stdlib/stats/base/ndarray/snanmean]: compute the arithmetic mean of a one-dimensional single-precision floating-point ndarray, ignoring `NaN` values.
- [`snanmeanors( arrays )`][@stdlib/stats/base/ndarray/snanmeanors]: compute the arithmetic mean of a one-dimensional single-precision floating-point ndarray, ignoring `NaN` values and using ordinary recursive summation.
- [`snanmeanpn( arrays )`][@stdlib/stats/base/ndarray/snanmeanpn]: compute the arithmetic mean of a one-dimensional single-precision floating-point ndarray, ignoring `NaN` values and using a two-pass error correction algorithm.
- [`snanmeanwd( arrays )`][@stdlib/stats/base/ndarray/snanmeanwd]: compute the arithmetic mean of a one-dimensional single-precision floating-point ndarray, ignoring `NaN` values and using Welford's algorithm.
+- [`snanmidrange( arrays )`][@stdlib/stats/base/ndarray/snanmidrange]: compute the mid-range of a one-dimensional single-precision floating-point ndarray, ignoring `NaN` values.
- [`snanmin( arrays )`][@stdlib/stats/base/ndarray/snanmin]: compute the minimum value of a one-dimensional single-precision floating-point ndarray, ignoring `NaN` values.
- [`snanminabs( arrays )`][@stdlib/stats/base/ndarray/snanminabs]: compute the minimum absolute value of a one-dimensional single-precision floating-point ndarray, ignoring `NaN` values.
+- [`snanmskmax( arrays )`][@stdlib/stats/base/ndarray/snanmskmax]: calculate the maximum value of a one-dimensional single-precision floating-point ndarray according to a mask, ignoring `NaN` values.
+- [`snanmskmin( arrays )`][@stdlib/stats/base/ndarray/snanmskmin]: calculate the minimum value of a one-dimensional single-precision floating-point ndarray according to a mask, ignoring `NaN` values.
+- [`snanmskrange( arrays )`][@stdlib/stats/base/ndarray/snanmskrange]: calculate the range of a one-dimensional single-precision floating-point ndarray according to a mask, ignoring `NaN` values.
+- [`snanrange( arrays )`][@stdlib/stats/base/ndarray/snanrange]: compute the range of a one-dimensional single-precision floating-point ndarray, ignoring `NaN` values.
- [`srange( arrays )`][@stdlib/stats/base/ndarray/srange]: compute the range of a one-dimensional single-precision floating-point ndarray.
+- [`sstdev( arrays )`][@stdlib/stats/base/ndarray/sstdev]: calculate the standard deviation of a one-dimensional single-precision floating-point ndarray.
+- [`sstdevch( arrays )`][@stdlib/stats/base/ndarray/sstdevch]: calculate the standard deviation of a one-dimensional single-precision floating-point ndarray using a one-pass trial mean algorithm.
+- [`sstdevpn( arrays )`][@stdlib/stats/base/ndarray/sstdevpn]: calculate the standard deviation of a one-dimensional single-precision floating-point ndarray using a two-pass algorithm.
+- [`sstdevwd( arrays )`][@stdlib/stats/base/ndarray/sstdevwd]: calculate the standard deviation of a one-dimensional single-precision floating-point ndarray using Welford's algorithm.
+- [`stdev( arrays )`][@stdlib/stats/base/ndarray/stdev]: calculate the standard deviation of a one-dimensional ndarray.
+- [`stdevch( arrays )`][@stdlib/stats/base/ndarray/stdevch]: calculate the standard deviation of a one-dimensional ndarray using a one-pass trial mean algorithm.
+- [`stdevpn( arrays )`][@stdlib/stats/base/ndarray/stdevpn]: calculate the standard deviation of a one-dimensional ndarray using a two-pass algorithm.
+- [`stdevtk( arrays )`][@stdlib/stats/base/ndarray/stdevtk]: calculate the standard deviation of a one-dimensional ndarray using a one-pass textbook algorithm.
+- [`stdevwd( arrays )`][@stdlib/stats/base/ndarray/stdevwd]: calculate the standard deviation of a one-dimensional ndarray using Welford's algorithm.
+- [`stdevyc( arrays )`][@stdlib/stats/base/ndarray/stdevyc]: calculate the standard deviation of a one-dimensional ndarray using a one-pass algorithm proposed by Youngs and Cramer.
- [`sztest( arrays )`][@stdlib/stats/base/ndarray/sztest]: compute a one-sample Z-test for a one-dimensional single-precision floating-point ndarray.
- [`sztest2( arrays )`][@stdlib/stats/base/ndarray/sztest2]: compute a two-sample Z-test for two one-dimensional single-precision floating-point ndarrays.
+- [`variance( arrays )`][@stdlib/stats/base/ndarray/variance]: calculate the variance of a one-dimensional ndarray.
+- [`variancech( arrays )`][@stdlib/stats/base/ndarray/variancech]: calculate the variance of a one-dimensional ndarray using a one-pass trial mean algorithm.
+- [`variancewd( arrays )`][@stdlib/stats/base/ndarray/variancewd]: calculate the variance of a one-dimensional ndarray using Welford's algorithm.
- [`ztest( arrays )`][@stdlib/stats/base/ndarray/ztest]: compute a one-sample Z-test for a one-dimensional ndarray.
- [`ztest2( arrays )`][@stdlib/stats/base/ndarray/ztest2]: compute a two-sample Z-test for two one-dimensional ndarrays.
@@ -216,16 +274,32 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/base/ndarray/dmeanlipw]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dmeanlipw
+[@stdlib/stats/base/ndarray/dmeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dmeanors
+
[@stdlib/stats/base/ndarray/dmeanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dmeanpn
[@stdlib/stats/base/ndarray/dmeanpw]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dmeanpw
+[@stdlib/stats/base/ndarray/dmeanstdev]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dmeanstdev
+
+[@stdlib/stats/base/ndarray/dmeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dmeanwd
+
+[@stdlib/stats/base/ndarray/dmediansorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dmediansorted
+
+[@stdlib/stats/base/ndarray/dmidrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dmidrange
+
[@stdlib/stats/base/ndarray/dmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dmin
[@stdlib/stats/base/ndarray/dminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dminabs
[@stdlib/stats/base/ndarray/dminsorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dminsorted
+[@stdlib/stats/base/ndarray/dmskmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dmskmax
+
+[@stdlib/stats/base/ndarray/dmskmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dmskmin
+
+[@stdlib/stats/base/ndarray/dmskrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dmskrange
+
[@stdlib/stats/base/ndarray/dnanmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dnanmax
[@stdlib/stats/base/ndarray/dnanmaxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dnanmaxabs
@@ -240,12 +314,30 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/base/ndarray/dnanmeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dnanmeanwd
+[@stdlib/stats/base/ndarray/dnanmidrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dnanmidrange
+
[@stdlib/stats/base/ndarray/dnanmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dnanmin
[@stdlib/stats/base/ndarray/dnanminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dnanminabs
+[@stdlib/stats/base/ndarray/dnanmskmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dnanmskmax
+
+[@stdlib/stats/base/ndarray/dnanmskmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dnanmskmin
+
+[@stdlib/stats/base/ndarray/dnanmskrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dnanmskrange
+
+[@stdlib/stats/base/ndarray/dnanrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dnanrange
+
[@stdlib/stats/base/ndarray/drange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/drange
+[@stdlib/stats/base/ndarray/dstdev]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dstdev
+
+[@stdlib/stats/base/ndarray/dstdevch]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dstdevch
+
+[@stdlib/stats/base/ndarray/dstdevpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dstdevpn
+
+[@stdlib/stats/base/ndarray/dstdevwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dstdevwd
+
[@stdlib/stats/base/ndarray/dztest]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dztest
[@stdlib/stats/base/ndarray/dztest2]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/dztest2
@@ -274,6 +366,10 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/base/ndarray/mediansorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/mediansorted
+[@stdlib/stats/base/ndarray/midrange-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/midrange-by
+
+[@stdlib/stats/base/ndarray/midrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/midrange
+
[@stdlib/stats/base/ndarray/min-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/min-by
[@stdlib/stats/base/ndarray/min]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/min
@@ -284,24 +380,46 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/base/ndarray/mskmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/mskmax
+[@stdlib/stats/base/ndarray/mskmidrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/mskmidrange
+
[@stdlib/stats/base/ndarray/mskmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/mskmin
[@stdlib/stats/base/ndarray/mskrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/mskrange
+[@stdlib/stats/base/ndarray/nanmax-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/nanmax-by
+
[@stdlib/stats/base/ndarray/nanmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/nanmax
[@stdlib/stats/base/ndarray/nanmaxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/nanmaxabs
[@stdlib/stats/base/ndarray/nanmean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/nanmean
+[@stdlib/stats/base/ndarray/nanmeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/nanmeanors
+
[@stdlib/stats/base/ndarray/nanmeanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/nanmeanpn
[@stdlib/stats/base/ndarray/nanmeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/nanmeanwd
+[@stdlib/stats/base/ndarray/nanmidrange-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/nanmidrange-by
+
+[@stdlib/stats/base/ndarray/nanmidrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/nanmidrange
+
+[@stdlib/stats/base/ndarray/nanmin-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/nanmin-by
+
[@stdlib/stats/base/ndarray/nanmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/nanmin
[@stdlib/stats/base/ndarray/nanminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/nanminabs
+[@stdlib/stats/base/ndarray/nanmskmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/nanmskmax
+
+[@stdlib/stats/base/ndarray/nanmskmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/nanmskmin
+
+[@stdlib/stats/base/ndarray/nanmskrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/nanmskrange
+
+[@stdlib/stats/base/ndarray/nanrange-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/nanrange-by
+
+[@stdlib/stats/base/ndarray/nanrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/nanrange
+
[@stdlib/stats/base/ndarray/range-by]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/range-by
[@stdlib/stats/base/ndarray/range]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/range
@@ -316,6 +434,12 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/base/ndarray/scuminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/scuminabs
+[@stdlib/stats/base/ndarray/sdsmean]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/sdsmean
+
+[@stdlib/stats/base/ndarray/sdsmeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/sdsmeanors
+
+[@stdlib/stats/base/ndarray/sdsnanmeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/sdsnanmeanors
+
[@stdlib/stats/base/ndarray/smax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/smax
[@stdlib/stats/base/ndarray/smaxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/smaxabs
@@ -334,18 +458,32 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/base/ndarray/smeanlipw]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/smeanlipw
+[@stdlib/stats/base/ndarray/smeanors]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/smeanors
+
[@stdlib/stats/base/ndarray/smeanpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/smeanpn
[@stdlib/stats/base/ndarray/smeanpw]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/smeanpw
[@stdlib/stats/base/ndarray/smeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/smeanwd
+[@stdlib/stats/base/ndarray/smediansorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/smediansorted
+
+[@stdlib/stats/base/ndarray/smidrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/smidrange
+
[@stdlib/stats/base/ndarray/smin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/smin
[@stdlib/stats/base/ndarray/sminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/sminabs
[@stdlib/stats/base/ndarray/sminsorted]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/sminsorted
+[@stdlib/stats/base/ndarray/smskmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/smskmax
+
+[@stdlib/stats/base/ndarray/smskmidrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/smskmidrange
+
+[@stdlib/stats/base/ndarray/smskmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/smskmin
+
+[@stdlib/stats/base/ndarray/smskrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/smskrange
+
[@stdlib/stats/base/ndarray/snanmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/snanmax
[@stdlib/stats/base/ndarray/snanmaxabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/snanmaxabs
@@ -358,16 +496,52 @@ console.log( objectKeys( ns ) );
[@stdlib/stats/base/ndarray/snanmeanwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/snanmeanwd
+[@stdlib/stats/base/ndarray/snanmidrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/snanmidrange
+
[@stdlib/stats/base/ndarray/snanmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/snanmin
[@stdlib/stats/base/ndarray/snanminabs]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/snanminabs
+[@stdlib/stats/base/ndarray/snanmskmax]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/snanmskmax
+
+[@stdlib/stats/base/ndarray/snanmskmin]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/snanmskmin
+
+[@stdlib/stats/base/ndarray/snanmskrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/snanmskrange
+
+[@stdlib/stats/base/ndarray/snanrange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/snanrange
+
[@stdlib/stats/base/ndarray/srange]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/srange
+[@stdlib/stats/base/ndarray/sstdev]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/sstdev
+
+[@stdlib/stats/base/ndarray/sstdevch]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/sstdevch
+
+[@stdlib/stats/base/ndarray/sstdevpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/sstdevpn
+
+[@stdlib/stats/base/ndarray/sstdevwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/sstdevwd
+
+[@stdlib/stats/base/ndarray/stdev]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/stdev
+
+[@stdlib/stats/base/ndarray/stdevch]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/stdevch
+
+[@stdlib/stats/base/ndarray/stdevpn]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/stdevpn
+
+[@stdlib/stats/base/ndarray/stdevtk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/stdevtk
+
+[@stdlib/stats/base/ndarray/stdevwd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/stdevwd
+
+[@stdlib/stats/base/ndarray/stdevyc]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/stdevyc
+
[@stdlib/stats/base/ndarray/sztest]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/sztest
[@stdlib/stats/base/ndarray/sztest2]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/sztest2
+[@stdlib/stats/base/ndarray/variance]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/variance
+
+[@stdlib/stats/base/ndarray/variancech]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/variancech
+
+[@stdlib/stats/base/ndarray/variancewd]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/variancewd
+
[@stdlib/stats/base/ndarray/ztest]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/ztest
[@stdlib/stats/base/ndarray/ztest2]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/base/ndarray/ztest2