|
| 1 | +# coding=utf-8 |
| 2 | +# Copyright 2020 The Tensor2Tensor Authors. |
| 3 | +# |
| 4 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +# you may not use this file except in compliance with the License. |
| 6 | +# You may obtain a copy of the License at |
| 7 | +# |
| 8 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +# |
| 10 | +# Unless required by applicable law or agreed to in writing, software |
| 11 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +# See the License for the specific language governing permissions and |
| 14 | +# limitations under the License. |
| 15 | + |
| 16 | +"""Problems for Seq2Edits (see models/research/transformer_seq2edits.py).""" |
| 17 | + |
| 18 | +from __future__ import absolute_import |
| 19 | +from __future__ import division |
| 20 | +from __future__ import print_function |
| 21 | + |
| 22 | +import os |
| 23 | + |
| 24 | +from tensor2tensor.data_generators import text_encoder |
| 25 | +from tensor2tensor.data_generators import text_problems |
| 26 | +from tensor2tensor.layers import modalities |
| 27 | +from tensor2tensor.utils import registry |
| 28 | + |
| 29 | +import tensorflow.compat.v1 as tf |
| 30 | + |
| 31 | + |
| 32 | +@modalities.is_pointwise |
| 33 | +def pointer_top(body_output, targets, model_hparams, vocab_size): |
| 34 | + """Like identity_top() with is_pointwise annotation.""" |
| 35 | + del targets, model_hparams, vocab_size # unused arg |
| 36 | + return body_output |
| 37 | + |
| 38 | + |
| 39 | +def pointer_bottom(x, model_hparams, vocab_size): |
| 40 | + """Like identity_bottom() without converting to float.""" |
| 41 | + del model_hparams, vocab_size # unused arg |
| 42 | + return x |
| 43 | + |
| 44 | + |
| 45 | +@registry.register_problem |
| 46 | +class Seq2editsGec(text_problems.Text2TextProblem): |
| 47 | + """Seq2Edits for grammatical error correction.""" |
| 48 | + |
| 49 | + def dataset_filename(self): |
| 50 | + return "edit_ops_gec" |
| 51 | + |
| 52 | + @property |
| 53 | + def vocab_file(self): |
| 54 | + return "vocab.subwords" |
| 55 | + |
| 56 | + @property |
| 57 | + def vocab_filename(self): |
| 58 | + return "vocab.subwords" |
| 59 | + |
| 60 | + @property |
| 61 | + def error_tag_vocab_file(self): |
| 62 | + return "vocab.error_tags" |
| 63 | + |
| 64 | + def feature_encoders(self, data_dir): |
| 65 | + subword_encoder = text_encoder.SubwordTextEncoder( |
| 66 | + os.path.join(data_dir, self.vocab_file)) |
| 67 | + error_tag_encoder = text_encoder.TokenTextEncoder( |
| 68 | + os.path.join(data_dir, self.error_tag_vocab_file)) |
| 69 | + return { |
| 70 | + "inputs": subword_encoder, |
| 71 | + "targets": subword_encoder, |
| 72 | + "targets_error_tag": error_tag_encoder |
| 73 | + } |
| 74 | + |
| 75 | + def hparams(self, defaults, model_hparams): |
| 76 | + super(Seq2editsGec, self).hparams(defaults, model_hparams) |
| 77 | + |
| 78 | + for pointer_feat in ["targets_start_token", "targets_end_token"]: |
| 79 | + defaults.modality[pointer_feat] = modalities.ModalityType.IDENTITY |
| 80 | + defaults.vocab_size[pointer_feat] = None |
| 81 | + model_hparams.bottom[pointer_feat] = pointer_bottom |
| 82 | + model_hparams.top[pointer_feat] = pointer_top |
| 83 | + # Whether to use tags. |
| 84 | + if "use_error_tags" not in model_hparams: |
| 85 | + model_hparams.add_hparam("use_error_tags", True) |
| 86 | + # If true, span and tag prediction is in the middle of the decoder layer |
| 87 | + # stack. Otherwise, they are at the end of the decoder layer stack. |
| 88 | + if "middle_prediction" not in model_hparams: |
| 89 | + model_hparams.add_hparam("middle_prediction", True) |
| 90 | + # If middle_prediction=True, divide num_decoder_layers by this to get the |
| 91 | + # number of layers before and after the middle prediction. |
| 92 | + if "middle_prediction_layer_factor" not in model_hparams: |
| 93 | + model_hparams.add_hparam("middle_prediction_layer_factor", 2) |
| 94 | + # Whether to predict the targets_start_token feature. If this is false, use |
| 95 | + # the previous end token as implicit start token. |
| 96 | + if "use_start_token" not in model_hparams: |
| 97 | + model_hparams.add_hparam("use_start_token", False) |
| 98 | + # Whether to feed back targets_end_token to the next time step. If false, |
| 99 | + # only feed back targets_start_token. |
| 100 | + if "feedback_end_token" not in model_hparams: |
| 101 | + model_hparams.add_hparam("feedback_end_token", False) |
| 102 | + # Number of feedforward layers between prediction layers in the cascade. |
| 103 | + if "ffn_in_prediction_cascade" not in model_hparams: |
| 104 | + model_hparams.add_hparam("ffn_in_prediction_cascade", 1) |
| 105 | + # Embedding size for error tags. |
| 106 | + if "error_tag_embed_size" not in model_hparams: |
| 107 | + model_hparams.add_hparam("error_tag_embed_size", 6) |
| 108 | + if model_hparams.use_error_tags: |
| 109 | + defaults.modality["targets_error_tag"] = modalities.ModalityType.SYMBOL |
| 110 | + error_tag_vocab_size = self._encoders["targets_error_tag"].vocab_size |
| 111 | + defaults.vocab_size["targets_error_tag"] = error_tag_vocab_size |
| 112 | + model_hparams.top["targets_error_tag"] = pointer_top |
| 113 | + |
| 114 | + def example_reading_spec(self): |
| 115 | + data_fields, _ = super(Seq2editsGec, self).example_reading_spec() |
| 116 | + data_fields["targets_start_token"] = tf.VarLenFeature(tf.int64) |
| 117 | + data_fields["targets_end_token"] = tf.VarLenFeature(tf.int64) |
| 118 | + data_fields["targets_error_tag"] = tf.VarLenFeature(tf.int64) |
| 119 | + return data_fields, None |
| 120 | + |
| 121 | + |
| 122 | +@registry.register_problem |
| 123 | +class Seq2editsGecPacked256(Seq2editsGec): |
| 124 | + """Packed version for TPU.""" |
| 125 | + |
| 126 | + def dataset_filename(self): |
| 127 | + return "edit_ops_gec_packed256" |
| 128 | + |
| 129 | + @property |
| 130 | + def packed_length(self): |
| 131 | + return 256 |
| 132 | + |
| 133 | + @property |
| 134 | + def max_segment_length(self): |
| 135 | + return 256 |
| 136 | + |
| 137 | + |
| 138 | +@registry.register_problem |
| 139 | +class Seq2editsGecNoTags(Seq2editsGec): |
| 140 | + """Seq2Edits for grammatical error correction without tags.""" |
| 141 | + |
| 142 | + def dataset_filename(self): |
| 143 | + return "edit_ops_gec" |
| 144 | + |
| 145 | + def hparams(self, defaults, model_hparams): |
| 146 | + super(Seq2editsGecNoTags, self).hparams(defaults, model_hparams) |
| 147 | + model_hparams.use_error_tags = False |
| 148 | + |
| 149 | + |
| 150 | +@registry.register_problem |
| 151 | +class Seq2editsGecNoTagsPacked256(Seq2editsGecPacked256): |
| 152 | + """Packed version for TPU.""" |
| 153 | + |
| 154 | + def dataset_filename(self): |
| 155 | + return "edit_ops_gec_packed256" |
| 156 | + |
| 157 | + def hparams(self, defaults, model_hparams): |
| 158 | + super(Seq2editsGecNoTagsPacked256, self).hparams(defaults, model_hparams) |
| 159 | + model_hparams.use_error_tags = False |
| 160 | + |
| 161 | + |
| 162 | +@registry.register_problem |
| 163 | +class Seq2editsGecDeep(Seq2editsGec): |
| 164 | + """Seq2Edits for grammatical error correction with deeper decoder.""" |
| 165 | + |
| 166 | + def hparams(self, defaults, model_hparams): |
| 167 | + super(Seq2editsGecDeep, self).hparams(defaults, model_hparams) |
| 168 | + model_hparams.middle_prediction_layer_factor = 1.5 |
| 169 | + |
| 170 | + |
| 171 | +@registry.register_problem |
| 172 | +class Seq2editsGecDeepPacked256(Seq2editsGecPacked256): |
| 173 | + """Packed version for TPU.""" |
| 174 | + |
| 175 | + def hparams(self, defaults, model_hparams): |
| 176 | + super(Seq2editsGecDeepPacked256, self).hparams(defaults, model_hparams) |
| 177 | + model_hparams.middle_prediction_layer_factor = 1.5 |
| 178 | + |
| 179 | + |
| 180 | +@registry.register_problem |
| 181 | +class Seq2editsGecDeepNoTags(Seq2editsGec): |
| 182 | + """Deep Seq2Edits model for grammatical error correction without tags.""" |
| 183 | + |
| 184 | + def hparams(self, defaults, model_hparams): |
| 185 | + super(Seq2editsGecDeepNoTags, self).hparams(defaults, model_hparams) |
| 186 | + model_hparams.middle_prediction_layer_factor = 1.5 |
| 187 | + model_hparams.use_error_tags = False |
| 188 | + |
| 189 | + |
| 190 | +@registry.register_problem |
| 191 | +class Seq2editsGecDeepNoTagsPacked256(Seq2editsGecPacked256): |
| 192 | + """Packed version for TPU.""" |
| 193 | + |
| 194 | + def hparams(self, defaults, model_hparams): |
| 195 | + super(Seq2editsGecDeepNoTagsPacked256, self).hparams( |
| 196 | + defaults, model_hparams) |
| 197 | + model_hparams.middle_prediction_layer_factor = 1.5 |
| 198 | + model_hparams.use_error_tags = False |
| 199 | + |
| 200 | + |
| 201 | +@registry.register_problem |
| 202 | +class Seq2editsTextnorm(Seq2editsGec): |
| 203 | + """Seq2Edits for text normalization.""" |
| 204 | + |
| 205 | + def dataset_filename(self): |
| 206 | + return "edit_ops_textnorm" |
| 207 | + |
| 208 | + @property |
| 209 | + def source_vocab_file(self): |
| 210 | + return "vocab.source" |
| 211 | + |
| 212 | + @property |
| 213 | + def target_vocab_file(self): |
| 214 | + return "vocab.target" |
| 215 | + |
| 216 | + @property |
| 217 | + def error_tag_vocab_file(self): |
| 218 | + return "vocab.error_tags" |
| 219 | + |
| 220 | + def feature_encoders(self, data_dir): |
| 221 | + source_encoder = text_encoder.TokenTextEncoder( |
| 222 | + os.path.join(data_dir, self.source_vocab_file)) |
| 223 | + target_encoder = text_encoder.TokenTextEncoder( |
| 224 | + os.path.join(data_dir, self.target_vocab_file)) |
| 225 | + error_tag_encoder = text_encoder.TokenTextEncoder( |
| 226 | + os.path.join(data_dir, self.error_tag_vocab_file)) |
| 227 | + return { |
| 228 | + "inputs": source_encoder, |
| 229 | + "targets": target_encoder, |
| 230 | + "targets_error_tag": error_tag_encoder |
| 231 | + } |
| 232 | + |
| 233 | + |
| 234 | +@registry.register_problem |
| 235 | +class Seq2editsTextnormPacked256(Seq2editsTextnorm): |
| 236 | + """Packed version for TPU.""" |
| 237 | + |
| 238 | + def dataset_filename(self): |
| 239 | + return "edit_ops_textnorm_packed256" |
| 240 | + |
| 241 | + @property |
| 242 | + def packed_length(self): |
| 243 | + return 256 |
| 244 | + |
| 245 | + @property |
| 246 | + def max_segment_length(self): |
| 247 | + return 256 |
| 248 | + |
| 249 | + |
| 250 | +@registry.register_problem |
| 251 | +class Seq2editsTextnormNoTags(Seq2editsTextnorm): |
| 252 | + """Seq2Edits for text normalization without tags.""" |
| 253 | + |
| 254 | + def hparams(self, defaults, model_hparams): |
| 255 | + super(Seq2editsTextnormNoTags, self).hparams(defaults, model_hparams) |
| 256 | + model_hparams.use_error_tags = False |
| 257 | + |
| 258 | + |
| 259 | +@registry.register_problem |
| 260 | +class Seq2editsTextnormNoTagsPacked256(Seq2editsTextnormPacked256): |
| 261 | + """Packed version for TPU.""" |
| 262 | + |
| 263 | + def hparams(self, defaults, model_hparams): |
| 264 | + super(Seq2editsTextnormNoTagsPacked256, self).hparams( |
| 265 | + defaults, model_hparams) |
| 266 | + model_hparams.use_error_tags = False |
0 commit comments