Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
File renamed without changes.
33 changes: 33 additions & 0 deletions sepal_petal detection/app.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
import numpy as np
import pandas as pd
from flask import Flask, request, jsonify, render_template
import pickle

app = Flask(__name__)

model = pickle.load(open("model.pkl", "rb"))

@app.route("/")
def home():
return render_template("index.html")

# @app.route("/predict", methods=["POST"])
# def predict():
# float_features = [float(x) for x in request.form.values()]
# features = [np.array(float_features)]
# prediction = model.predict(features)

# return render_template("index.html", prediction_text="The flower is {}".format(prediction))


@app.route("/predict", methods=["POST"])
def predict():
json_ = request.json
query_df = pd.DataFrame(json_)
prediction = model.predict(query_df)
# result = prediction.tolist()
return jsonify({"placement_stat":prediction.tolist()})


if __name__ == "__main__":
app.run(debug=True)
151 changes: 151 additions & 0 deletions sepal_petal detection/iris.csv
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
Sepal_Length,Sepal_Width,Petal_Length,Petal_Width,Class
5.1,3.5,1.4,0.2,Setosa
4.9,3,1.4,0.2,Setosa
4.7,3.2,1.3,0.2,Setosa
4.6,3.1,1.5,0.2,Setosa
5,3.6,1.4,0.2,Setosa
5.4,3.9,1.7,0.4,Setosa
4.6,3.4,1.4,0.3,Setosa
5,3.4,1.5,0.2,Setosa
4.4,2.9,1.4,0.2,Setosa
4.9,3.1,1.5,0.1,Setosa
5.4,3.7,1.5,0.2,Setosa
4.8,3.4,1.6,0.2,Setosa
4.8,3,1.4,0.1,Setosa
4.3,3,1.1,0.1,Setosa
5.8,4,1.2,0.2,Setosa
5.7,4.4,1.5,0.4,Setosa
5.4,3.9,1.3,0.4,Setosa
5.1,3.5,1.4,0.3,Setosa
5.7,3.8,1.7,0.3,Setosa
5.1,3.8,1.5,0.3,Setosa
5.4,3.4,1.7,0.2,Setosa
5.1,3.7,1.5,0.4,Setosa
4.6,3.6,1,0.2,Setosa
5.1,3.3,1.7,0.5,Setosa
4.8,3.4,1.9,0.2,Setosa
5,3,1.6,0.2,Setosa
5,3.4,1.6,0.4,Setosa
5.2,3.5,1.5,0.2,Setosa
5.2,3.4,1.4,0.2,Setosa
4.7,3.2,1.6,0.2,Setosa
4.8,3.1,1.6,0.2,Setosa
5.4,3.4,1.5,0.4,Setosa
5.2,4.1,1.5,0.1,Setosa
5.5,4.2,1.4,0.2,Setosa
4.9,3.1,1.5,0.2,Setosa
5,3.2,1.2,0.2,Setosa
5.5,3.5,1.3,0.2,Setosa
4.9,3.6,1.4,0.1,Setosa
4.4,3,1.3,0.2,Setosa
5.1,3.4,1.5,0.2,Setosa
5,3.5,1.3,0.3,Setosa
4.5,2.3,1.3,0.3,Setosa
4.4,3.2,1.3,0.2,Setosa
5,3.5,1.6,0.6,Setosa
5.1,3.8,1.9,0.4,Setosa
4.8,3,1.4,0.3,Setosa
5.1,3.8,1.6,0.2,Setosa
4.6,3.2,1.4,0.2,Setosa
5.3,3.7,1.5,0.2,Setosa
5,3.3,1.4,0.2,Setosa
7,3.2,4.7,1.4,Versicolor
6.4,3.2,4.5,1.5,Versicolor
6.9,3.1,4.9,1.5,Versicolor
5.5,2.3,4,1.3,Versicolor
6.5,2.8,4.6,1.5,Versicolor
5.7,2.8,4.5,1.3,Versicolor
6.3,3.3,4.7,1.6,Versicolor
4.9,2.4,3.3,1,Versicolor
6.6,2.9,4.6,1.3,Versicolor
5.2,2.7,3.9,1.4,Versicolor
5,2,3.5,1,Versicolor
5.9,3,4.2,1.5,Versicolor
6,2.2,4,1,Versicolor
6.1,2.9,4.7,1.4,Versicolor
5.6,2.9,3.6,1.3,Versicolor
6.7,3.1,4.4,1.4,Versicolor
5.6,3,4.5,1.5,Versicolor
5.8,2.7,4.1,1,Versicolor
6.2,2.2,4.5,1.5,Versicolor
5.6,2.5,3.9,1.1,Versicolor
5.9,3.2,4.8,1.8,Versicolor
6.1,2.8,4,1.3,Versicolor
6.3,2.5,4.9,1.5,Versicolor
6.1,2.8,4.7,1.2,Versicolor
6.4,2.9,4.3,1.3,Versicolor
6.6,3,4.4,1.4,Versicolor
6.8,2.8,4.8,1.4,Versicolor
6.7,3,5,1.7,Versicolor
6,2.9,4.5,1.5,Versicolor
5.7,2.6,3.5,1,Versicolor
5.5,2.4,3.8,1.1,Versicolor
5.5,2.4,3.7,1,Versicolor
5.8,2.7,3.9,1.2,Versicolor
6,2.7,5.1,1.6,Versicolor
5.4,3,4.5,1.5,Versicolor
6,3.4,4.5,1.6,Versicolor
6.7,3.1,4.7,1.5,Versicolor
6.3,2.3,4.4,1.3,Versicolor
5.6,3,4.1,1.3,Versicolor
5.5,2.5,4,1.3,Versicolor
5.5,2.6,4.4,1.2,Versicolor
6.1,3,4.6,1.4,Versicolor
5.8,2.6,4,1.2,Versicolor
5,2.3,3.3,1,Versicolor
5.6,2.7,4.2,1.3,Versicolor
5.7,3,4.2,1.2,Versicolor
5.7,2.9,4.2,1.3,Versicolor
6.2,2.9,4.3,1.3,Versicolor
5.1,2.5,3,1.1,Versicolor
5.7,2.8,4.1,1.3,Versicolor
6.3,3.3,6,2.5,Virginica
5.8,2.7,5.1,1.9,Virginica
7.1,3,5.9,2.1,Virginica
6.3,2.9,5.6,1.8,Virginica
6.5,3,5.8,2.2,Virginica
7.6,3,6.6,2.1,Virginica
4.9,2.5,4.5,1.7,Virginica
7.3,2.9,6.3,1.8,Virginica
6.7,2.5,5.8,1.8,Virginica
7.2,3.6,6.1,2.5,Virginica
6.5,3.2,5.1,2,Virginica
6.4,2.7,5.3,1.9,Virginica
6.8,3,5.5,2.1,Virginica
5.7,2.5,5,2,Virginica
5.8,2.8,5.1,2.4,Virginica
6.4,3.2,5.3,2.3,Virginica
6.5,3,5.5,1.8,Virginica
7.7,3.8,6.7,2.2,Virginica
7.7,2.6,6.9,2.3,Virginica
6,2.2,5,1.5,Virginica
6.9,3.2,5.7,2.3,Virginica
5.6,2.8,4.9,2,Virginica
7.7,2.8,6.7,2,Virginica
6.3,2.7,4.9,1.8,Virginica
6.7,3.3,5.7,2.1,Virginica
7.2,3.2,6,1.8,Virginica
6.2,2.8,4.8,1.8,Virginica
6.1,3,4.9,1.8,Virginica
6.4,2.8,5.6,2.1,Virginica
7.2,3,5.8,1.6,Virginica
7.4,2.8,6.1,1.9,Virginica
7.9,3.8,6.4,2,Virginica
6.4,2.8,5.6,2.2,Virginica
6.3,2.8,5.1,1.5,Virginica
6.1,2.6,5.6,1.4,Virginica
7.7,3,6.1,2.3,Virginica
6.3,3.4,5.6,2.4,Virginica
6.4,3.1,5.5,1.8,Virginica
6,3,4.8,1.8,Virginica
6.9,3.1,5.4,2.1,Virginica
6.7,3.1,5.6,2.4,Virginica
6.9,3.1,5.1,2.3,Virginica
5.8,2.7,5.1,1.9,Virginica
6.8,3.2,5.9,2.3,Virginica
6.7,3.3,5.7,2.5,Virginica
6.7,3,5.2,2.3,Virginica
6.3,2.5,5,1.9,Virginica
6.5,3,5.2,2,Virginica
6.2,3.4,5.4,2.3,Virginica
5.9,3,5.1,1.8,Virginica
Binary file added sepal_petal detection/model.pkl
Binary file not shown.
31 changes: 31 additions & 0 deletions sepal_petal detection/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
import pickle

# Load the csv file
df = pd.read_csv("iris.csv")

print(df.head())

# Select independent and dependent variable
X = df[["Sepal_Length", "Sepal_Width", "Petal_Length", "Petal_Width"]]
y = df["Class"]

# Split the dataset into train and test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=50)

# Feature scaling
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test= sc.transform(X_test)

# Instantiate the model
classifier = RandomForestClassifier()

# Fit the model
classifier.fit(X_train, y_train)

# Make pickle file of our model
pickle.dump(classifier, open("model.pkl", "wb"))