Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions cfgs/pipeline/split_inference.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,10 @@ codec:
nn_task_part2:
dump_results: False
output_results_dir: "${codec.output_dir}/output_results"
dump_features: False
feature_dir: "${..output_dir_root}/features_pre_nn_part2/${dataset.datacatalog}/${dataset.config.dataset_name}"
dump_features_hash: False
hash_format: md5
conformance:
save_conformance_files: False
subsample_ratio: 9
Expand Down
45 changes: 45 additions & 0 deletions compressai_vision/pipelines/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,11 @@
min_max_normalization,
)
from compressai_vision.model_wrappers import BaseWrapper
from compressai_vision.utils import (
FileLikeHasher,
contiguous_features,
freeze_zip_timestamps,
)


class Parts(Enum):
Expand Down Expand Up @@ -349,6 +354,12 @@ def _from_features_to_output(
"""performs the inference of the 2nd part of the NN model"""
output_results_dir = self.configs["nn_task_part2"].output_results_dir

seq_name = (
seq_name
if seq_name is not None
else os.path.splitext(os.path.basename(x.get("file_name", "")))[0]
)

results_file = f"{output_results_dir}/{seq_name}{self._output_ext}"

assert "data" in x
Expand All @@ -374,6 +385,40 @@ def _from_features_to_output(
for k, v in zip(vision_model.split_layer_list, x["data"].values())
}

if (
self.configs["nn_task_part2"].dump_features
or self.configs["nn_task_part2"].dump_features_hash
):
feature_dir = self.configs["nn_task_part2"].feature_dir
self._create_folder(feature_dir)

dump_feature_hash = self.configs["nn_task_part2"].dump_features_hash
hash_format = self.configs["nn_task_part2"].hash_format

feature_output_ext = (
f".{hash_format}" if dump_feature_hash else self._output_ext
)
path = f"{feature_dir}/{seq_name}{feature_output_ext}"

features_file = (
FileLikeHasher(path, hash_format) if dump_feature_hash else path
)

self.logger.debug(f"dumping features prior to nn part2 in: {feature_dir}")

# [TODO] align with nn_task_part1 dump features
features_to_dump = contiguous_features(x)

with freeze_zip_timestamps():
if dump_feature_hash:
torch.save(features_to_dump, features_file, pickle_protocol=4)
else:
with open(features_file, "wb") as f:
torch.save(features_to_dump, f, pickle_protocol=4)

if hasattr(features_file, "close"):
features_file.close()

results = vision_model.features_to_output(x, self.device_nn_part2)
if self.configs["nn_task_part2"].dump_results:
self._create_folder(output_results_dir)
Expand Down
4 changes: 4 additions & 0 deletions compressai_vision/utils/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@

from . import dataio, git, pip, system
from .external_exec import get_max_num_cpus
from .hash import FileLikeHasher, contiguous_features, freeze_zip_timestamps
from .misc import dict_sum, dl_to_ld, ld_to_dl, metric_tracking, time_measure, to_cpu

__all__ = [
Expand All @@ -43,4 +44,7 @@
"dict_sum",
"dl_to_ld",
"ld_to_dl",
"FileLikeHasher",
"freeze_zip_timestamps",
"contiguous_features",
]
96 changes: 96 additions & 0 deletions compressai_vision/utils/hash.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
# Copyright (c) 2022-2024, InterDigital Communications, Inc
# All rights reserved.

# Redistribution and use in source and binary forms, with or without
# modification, are permitted (subject to the limitations in the disclaimer
# below) provided that the following conditions are met:

# * Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# * Neither the name of InterDigital Communications, Inc nor the names of its
# contributors may be used to endorse or promote products derived from this
# software without specific prior written permission.

# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY
# THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
# CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT
# NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
# WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
# OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
# ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


import hashlib
import zipfile

from collections import OrderedDict
from collections.abc import Mapping, Sequence
from contextlib import contextmanager
from typing import Tuple

import torch


class FileLikeHasher:
def __init__(self, fn, algo: str = "md5"):
self._h = hashlib.new(algo)
self._fn = fn
self._nbytes = 0

def write(self, byts):
self._h.update(byts)
self._nbytes += len(byts)
return len(byts)

def flush(self):
pass

def close(self):
with open(self._fn, "w") as f:
f.write(self._h.hexdigest())
f.write("\n")


@contextmanager
def freeze_zip_timestamps(
fixed: Tuple[int, int, int, int, int, int] = (1980, 1, 1, 0, 0, 0),
):
_orig_init = zipfile.ZipInfo.__init__

def _patched(self, *args, **kwargs):
_orig_init(self, *args, **kwargs)
self.date_time = fixed # ZIP fixed time

zipfile.ZipInfo.__init__ = _patched
try:
yield
finally:
zipfile.ZipInfo.__init__ = _orig_init


def contiguous_features(obj):
if isinstance(obj, torch.Tensor):
return obj.to("cpu").contiguous().clone()

if isinstance(obj, Mapping):
return OrderedDict(
(k, contiguous_features(v))
for k, v in sorted(obj.items(), key=lambda item: str(item[0]))
if not str(k).startswith("file")
)

if isinstance(obj, set):
return tuple(sorted(obj, key=str))

if isinstance(obj, Sequence) and not isinstance(obj, (str, bytes)):
return type(obj)(contiguous_features(v) for v in obj)

return obj