Skip to content

Lu-Yang666/LDNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LDNet

Label Drop for Multi-Aspect Relation Modeling in Universal Information Extraction

Requirements

  • Environment
    • Python >= 3.10
    • CUDA 11.8
    • Download deberta-v3-base model from Huggingface and put it under file microsoft/deberta-v3-large.
    • Run the command below:
    pip install -r requirements.txt
    
    • Install REx, and change REx/rex/tasks with tasks in this repo:
    git clone https://github.com/Spico197/REx.git
    cd REx
    pip install -e .
    

Quick Start

Pretrained Model weights & Datasets

Download pretrained model from Downton/LDNet_Pretrain and put the folder under LDNet_outputs folder. Download datasets from Mirror and put them under resources folder. Zero-shot datasets are in Spico/Mirror, put them under resources/Mirror folder. Download MIE datasets (Twitter-2015, Twitter-2017, MNRE) and transform them:

python data/txt2json.py ./ data/newInst/ T F F

Evaluation

# main tasks
bash scripts/single_task_wPTAllExcluded_wInstruction/run.sh

# Multi-span and N-ary extraction
bash scripts/single_task_wPTAllExcluded_wInstruction/run_new_tasks.sh

# Few-shot
bash scripts/single_task_wPTAllExcluded_wInstruction/fewshot.sh

# Zero-shot
python -m src.eval

# Ablation
bash scripts/ablation.sh

# MIE
bash MIE.sh

Training

rex train -m src.task -dc conf/Pretrain_ld.yaml

Citation

If you find our model/code/paper helpful, please consider cite our paper 📝 and star us ⭐️!

@misc{yang2025labeldropmultiaspectrelation,
      title={Label Drop for Multi-Aspect Relation Modeling in Universal Information Extraction}, 
      author={Lu Yang and Jiajia Li and En Ci and Lefei Zhang and Zuchao Li and Ping Wang},
      year={2025},
      eprint={2502.12614},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2502.12614}, 
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published