- Environment
- Python >= 3.10
- CUDA 11.8
- Download deberta-v3-base model from Huggingface and put it under file
microsoft/deberta-v3-large. - Run the command below:
pip install -r requirements.txt- Install REx, and change
REx/rex/taskswithtasksin this repo:
git clone https://github.com/Spico197/REx.git cd REx pip install -e .
Download pretrained model from Downton/LDNet_Pretrain and put the folder under LDNet_outputs folder. Download datasets from Mirror and put them under resources folder. Zero-shot datasets are in Spico/Mirror, put them under resources/Mirror folder. Download MIE datasets (Twitter-2015, Twitter-2017, MNRE) and transform them:
python data/txt2json.py ./ data/newInst/ T F F
# main tasks
bash scripts/single_task_wPTAllExcluded_wInstruction/run.sh
# Multi-span and N-ary extraction
bash scripts/single_task_wPTAllExcluded_wInstruction/run_new_tasks.sh
# Few-shot
bash scripts/single_task_wPTAllExcluded_wInstruction/fewshot.sh
# Zero-shot
python -m src.eval
# Ablation
bash scripts/ablation.sh
# MIE
bash MIE.sh
rex train -m src.task -dc conf/Pretrain_ld.yaml
If you find our model/code/paper helpful, please consider cite our paper 📝 and star us ⭐️!
@misc{yang2025labeldropmultiaspectrelation,
title={Label Drop for Multi-Aspect Relation Modeling in Universal Information Extraction},
author={Lu Yang and Jiajia Li and En Ci and Lefei Zhang and Zuchao Li and Ping Wang},
year={2025},
eprint={2502.12614},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.12614},
}