Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions changelog_entry.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
- bump: patch
changes:
fixed:
- Reduced set of CPS imputed PUF variables for simplicity.
30 changes: 8 additions & 22 deletions policyengine_us_data/datasets/cps/cps.py
Original file line number Diff line number Diff line change
Expand Up @@ -169,9 +169,7 @@ def add_rent(self, cps: h5py.File, person: DataFrame, household: DataFrame):
},
na_action="ignore",
).fillna(train_df.tenure_type)
train_df = train_df[train_df.is_household_head].sample(
100_000 if not test_lite else 1_000
)
train_df = train_df[train_df.is_household_head]
inference_df = cps_sim.calculate_dataframe(PREDICTORS)
mask = inference_df.is_household_head.values
inference_df = inference_df[mask]
Expand Down Expand Up @@ -1837,25 +1835,13 @@ def determine_reference_person(group):
logging.getLogger("microimpute").setLevel(getattr(logging, log_level))

qrf_model = QRF()
if test_lite:
donor_data = donor_data.sample(frac=0.1, random_state=42).reset_index(
drop=True
)
fitted_model = qrf_model.fit(
X_train=donor_data,
predictors=PREDICTORS,
imputed_variables=IMPUTED_VARIABLES,
weight_col=weights[0],
tune_hyperparameters=False,
)
else:
fitted_model = qrf_model.fit(
X_train=donor_data,
predictors=PREDICTORS,
imputed_variables=IMPUTED_VARIABLES,
weight_col=weights[0],
tune_hyperparameters=False,
)
fitted_model = qrf_model.fit(
X_train=donor_data,
predictors=PREDICTORS,
imputed_variables=IMPUTED_VARIABLES,
weight_col=weights[0],
tune_hyperparameters=False,
)
imputations = fitted_model.predict(X_test=receiver_data)

for var in IMPUTED_VARIABLES:
Expand Down
2 changes: 1 addition & 1 deletion policyengine_us_data/datasets/cps/enhanced_cps.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ def dropout_weights(weights, p):

start_loss = None

iterator = trange(1_000 if not os.environ.get("TEST_LITE") else 500)
iterator = trange(500)
performance = pd.DataFrame()
for i in iterator:
optimizer.zero_grad()
Expand Down
43 changes: 1 addition & 42 deletions policyengine_us_data/datasets/cps/extended_cps.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,55 +83,15 @@
]

OVERRIDDEN_IMPUTED_VARIABLES = [
"partnership_s_corp_income",
"interest_deduction",
"unreimbursed_business_employee_expenses",
"pre_tax_contributions",
"w2_wages_from_qualified_business",
"unadjusted_basis_qualified_property",
"business_is_sstb",
"charitable_cash_donations",
"self_employed_pension_contribution_ald",
"unrecaptured_section_1250_gain",
"taxable_unemployment_compensation",
"domestic_production_ald",
"self_employed_health_insurance_ald",
"cdcc_relevant_expenses",
"salt_refund_income",
"foreign_tax_credit",
"estate_income",
"charitable_non_cash_donations",
"american_opportunity_credit",
"miscellaneous_income",
"alimony_expense",
"health_savings_account_ald",
"non_sch_d_capital_gains",
"general_business_credit",
"energy_efficient_home_improvement_credit",
"amt_foreign_tax_credit",
"excess_withheld_payroll_tax",
"savers_credit",
"student_loan_interest",
"investment_income_elected_form_4952",
"early_withdrawal_penalty",
"prior_year_minimum_tax_credit",
"farm_rent_income",
"qualified_tuition_expenses",
"educator_expense",
"long_term_capital_gains_on_collectibles",
"other_credits",
"casualty_loss",
"unreported_payroll_tax",
"recapture_of_investment_credit",
"deductible_mortgage_interest",
"qualified_reit_and_ptp_income",
"qualified_bdc_income",
"farm_operations_income",
"estate_income_would_be_qualified",
"farm_operations_income_would_be_qualified",
"farm_rent_income_would_be_qualified",
"partnership_s_corp_income_would_be_qualified",
"rental_income_would_be_qualified",
]


Expand All @@ -146,8 +106,7 @@ def generate(self):
cps_sim = Microsimulation(dataset=self.cps)
puf_sim = Microsimulation(dataset=self.puf)

if os.environ.get("TEST_LITE"):
puf_sim.subsample(1_000)
puf_sim.subsample(100_000)

INPUTS = [
"age",
Expand Down
10 changes: 4 additions & 6 deletions policyengine_us_data/datasets/puf/puf.py
Original file line number Diff line number Diff line change
Expand Up @@ -168,8 +168,7 @@ def impute_pension_contributions_to_puf(puf_df):
from policyengine_us_data.datasets.cps import CPS_2021

cps = Microsimulation(dataset=CPS_2021)
if os.environ.get("TEST_LITE"):
cps.subsample(1_000)
cps.subsample(1_000)
cps_df = cps.calculate_dataframe(
["employment_income", "household_weight", "pre_tax_contributions"]
)
Expand Down Expand Up @@ -198,10 +197,9 @@ def impute_missing_demographics(
.fillna(0)
)

if os.environ.get("TEST_LITE"):
puf_with_demographics = puf_with_demographics.sample(
n=1_000, random_state=0
)
puf_with_demographics = puf_with_demographics.sample(
n=1_000, random_state=0
)

DEMOGRAPHIC_VARIABLES = [
"AGEDP1",
Expand Down
2 changes: 1 addition & 1 deletion policyengine_us_data/datasets/sipp/sipp.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,7 @@ def train_tip_model():
sipp = sipp.loc[
np.random.choice(
sipp.index,
size=100_000 if not test_lite else 1_000,
size=10_000,
replace=True,
p=sipp.household_weight / sipp.household_weight.sum(),
)
Expand Down
Loading