Skip to content

Commit 26ccd88

Browse files
Tom's March 28 edits of calvo.md lecture
1 parent 08a3375 commit 26ccd88

File tree

1 file changed

+10
-2
lines changed

1 file changed

+10
-2
lines changed

lectures/calvo.md

Lines changed: 10 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -238,7 +238,7 @@ is:
238238
-s(\theta_t, \mu_t) \equiv - r(x_t,\mu_t) = \begin{bmatrix} 1 \\ \theta_t \end{bmatrix}' \begin{bmatrix} a_0 & -\frac{a_1 \alpha}{2} \\ -\frac{a_1 \alpha}{2} & -\frac{a_2 \alpha^2}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \theta_t \end{bmatrix} - \frac{c}{2} \mu_t^2 = - x_t'Rx_t - Q \mu_t^2
239239
```
240240

241-
Household welfare is summarized by:
241+
A benevolent government's time $0$ value is
242242

243243
```{math}
244244
:label: eq_old7
@@ -254,6 +254,12 @@ We can represent the dependence of $v_0$ on $(\vec \theta, \vec \mu)$ recursive
254254
v_t = - s(\theta_t, \mu_t) + \beta v_{t+1}
255255
```
256256

257+
where the government's time $t$ continuation value $v_t$ satisfies
258+
259+
$$
260+
v_t = - \sum_{j=0}^\infty \beta^j s(\theta_{t+j}, \mu_{t+j}) .
261+
$$
262+
257263
## Structure
258264

259265
The following structure is induced by private agents'
@@ -362,7 +368,7 @@ and then solve the resulting LQ dynamic programming problem.
362368
In the second stage, we maximize over the initial inflation rate $\theta_0$.
363369

364370
Define a feasible set of
365-
$(\overrightarrow x_1, \overrightarrow \mu_0)$ sequences:
371+
$(\overrightarrow x_1, \overrightarrow \mu_0)$ sequences, both of which must belong to $L^2$:
366372

367373
$$
368374
\Omega(x_0) = \left \lbrace ( \overrightarrow x_1, \overrightarrow \mu_0) : x_{t+1}
@@ -422,6 +428,8 @@ $$
422428
V = \max_{x_0} J(x_0)
423429
$$
424430

431+
where $V$ is the maximum value of $v_0$ defined in equation {eq}`eq_old7`.
432+
425433
The value function
426434

427435
$$

0 commit comments

Comments
 (0)