@@ -1080,7 +1080,7 @@ axes[1].set(title=r'Follower control variable $x_{t}$', xlabel='t')
10801080
10811081axes[2].plot(range(n), vt_leader, 'bo', ms=2)
10821082axes[2].plot(range(n), vt_reset_leader, 'ro', ms=2)
1083- axes[2].set(title=r'Leader value function $v(y_{t})$', xlabel='t')
1083+ axes[2].set(title=r'Leader value $v(y_{t})$', xlabel='t')
10841084
10851085plt.tight_layout()
10861086plt.show()
@@ -1371,13 +1371,13 @@ v2_direct_alt = - z[:, 0].T @ lq1.P @ z[:, 0] + lq1.d
13711371
13721372## Comparing Markov Perfect Equilibrium and Stackelberg Outcome
13731373
1374- It is enlightening to compare equilbrium quantities for firms 1 and 2 under two alternative
1374+ It is enlightening to compare equilbrium values for firms 1 and 2 under two alternative
13751375settings:
13761376
13771377 * A Markov perfect equilibrium like that described in [ this lecture] ( https://python.quantecon.org/markov_perf.html )
13781378 * A Stackelberg equilbrium
13791379
1380- The following code performs the required computations.
1380+ The following code performs the required computations, then plots the continuation values .
13811381
13821382
13831383``` {code-cell} python3
@@ -1392,7 +1392,7 @@ fig, ax = plt.subplots()
13921392ax.plot(vt_MPE, 'b', label='MPE')
13931393ax.plot(vt_leader, 'r', label='Stackelberg leader')
13941394ax.plot(vt_follower, 'g', label='Stackelberg follower')
1395- ax.set_title(r'MPE vs. Stackelberg Value Function ')
1395+ ax.set_title(r'Values for MPE duopolists and Stackelberg firms ')
13961396ax.set_xlabel('t')
13971397ax.legend(loc=(1.05, 0))
13981398plt.show()
0 commit comments