Skip to content

Commit 28d3a7a

Browse files
Tom's edit of dyn_stack lecture, March 16
1 parent f86021d commit 28d3a7a

File tree

1 file changed

+4
-4
lines changed

1 file changed

+4
-4
lines changed

lectures/dyn_stack.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1080,7 +1080,7 @@ axes[1].set(title=r'Follower control variable $x_{t}$', xlabel='t')
10801080
10811081
axes[2].plot(range(n), vt_leader, 'bo', ms=2)
10821082
axes[2].plot(range(n), vt_reset_leader, 'ro', ms=2)
1083-
axes[2].set(title=r'Leader value function $v(y_{t})$', xlabel='t')
1083+
axes[2].set(title=r'Leader value $v(y_{t})$', xlabel='t')
10841084
10851085
plt.tight_layout()
10861086
plt.show()
@@ -1371,13 +1371,13 @@ v2_direct_alt = - z[:, 0].T @ lq1.P @ z[:, 0] + lq1.d
13711371

13721372
## Comparing Markov Perfect Equilibrium and Stackelberg Outcome
13731373

1374-
It is enlightening to compare equilbrium quantities for firms 1 and 2 under two alternative
1374+
It is enlightening to compare equilbrium values for firms 1 and 2 under two alternative
13751375
settings:
13761376

13771377
* A Markov perfect equilibrium like that described in [this lecture](https://python.quantecon.org/markov_perf.html)
13781378
* A Stackelberg equilbrium
13791379

1380-
The following code performs the required computations.
1380+
The following code performs the required computations, then plots the continuation values.
13811381

13821382

13831383
```{code-cell} python3
@@ -1392,7 +1392,7 @@ fig, ax = plt.subplots()
13921392
ax.plot(vt_MPE, 'b', label='MPE')
13931393
ax.plot(vt_leader, 'r', label='Stackelberg leader')
13941394
ax.plot(vt_follower, 'g', label='Stackelberg follower')
1395-
ax.set_title(r'MPE vs. Stackelberg Value Function')
1395+
ax.set_title(r'Values for MPE duopolists and Stackelberg firms')
13961396
ax.set_xlabel('t')
13971397
ax.legend(loc=(1.05, 0))
13981398
plt.show()

0 commit comments

Comments
 (0)