Skip to content

Commit 6be0e65

Browse files
committed
update the thm and proof env
1 parent f464177 commit 6be0e65

File tree

1 file changed

+15
-5
lines changed

1 file changed

+15
-5
lines changed

lectures/orth_proj.md

Lines changed: 15 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -293,7 +293,9 @@ Combining this result with {eq}`pob` verifies the claim.
293293

294294
When a subspace onto which we project is orthonormal, computing the projection simplifies:
295295

296-
```{prf:theorem} If $\{u_1, \ldots, u_k\}$ is an orthonormal basis for $S$, then
296+
```{prf:theorem}
297+
298+
If $\{u_1, \ldots, u_k\}$ is an orthonormal basis for $S$, then
297299
298300
```{math}
299301
:label: exp_for_op
@@ -304,7 +306,9 @@ P y = \sum_{i=1}^k \langle y, u_i \rangle u_i,
304306
```
305307
```
306308
307-
```{prf:proof} Fix $y \in \mathbb R^n$ and let $P y$ be defined as in {eq}`exp_for_op`.
309+
```{prf:proof}
310+
311+
Fix $y \in \mathbb R^n$ and let $P y$ be defined as in {eq}`exp_for_op`.
308312
309313
Clearly, $P y \in S$.
310314
@@ -445,7 +449,9 @@ The next theorem shows that a best approximation is well defined and unique.
445449

446450
The proof uses the {prf:ref}`opt`.
447451

448-
```{prf:theorem} The unique minimizer of $\| y - X b \|$ over $b \in \mathbb R^K$ is
452+
```{prf:theorem}
453+
454+
The unique minimizer of $\| y - X b \|$ over $b \in \mathbb R^K$ is
449455
450456
$$
451457
\hat \beta := (X' X)^{-1} X' y
@@ -628,7 +634,9 @@ The next section gives details.
628634
(gram_schmidt)=
629635
### Gram-Schmidt Orthogonalization
630636

631-
```{prf:theorem} For each linearly independent set $\{x_1, \ldots, x_k\} \subset \mathbb R^n$, there exists an
637+
```{prf:theorem}
638+
639+
For each linearly independent set $\{x_1, \ldots, x_k\} \subset \mathbb R^n$, there exists an
632640
orthonormal set $\{u_1, \ldots, u_k\}$ with
633641
634642
$$
@@ -657,7 +665,9 @@ In some exercises below, you are asked to implement this algorithm and test it u
657665

658666
The following result uses the preceding algorithm to produce a useful decomposition.
659667

660-
```{prf:theorem} If $X$ is $n \times k$ with linearly independent columns, then there exists a factorization $X = Q R$ where
668+
```{prf:theorem}
669+
670+
If $X$ is $n \times k$ with linearly independent columns, then there exists a factorization $X = Q R$ where
661671
662672
* $R$ is $k \times k$, upper triangular, and nonsingular
663673
* $Q$ is $n \times k$ with orthonormal columns

0 commit comments

Comments
 (0)