@@ -293,7 +293,9 @@ Combining this result with {eq}`pob` verifies the claim.
293293
294294When a subspace onto which we project is orthonormal, computing the projection simplifies:
295295
296- ``` {prf:theorem} If $\{ u_1, \ldots, u_k\} $ is an orthonormal basis for $S$, then
296+ ``` {prf:theorem}
297+
298+ If $\{u_1, \ldots, u_k\}$ is an orthonormal basis for $S$, then
297299
298300```{math}
299301:label: exp_for_op
@@ -304,7 +306,9 @@ P y = \sum_{i=1}^k \langle y, u_i \rangle u_i,
304306```
305307```
306308
307- ```{prf:proof} Fix $y \in \mathbb R^n$ and let $P y$ be defined as in {eq}`exp_for_op`.
309+ ```{prf:proof}
310+
311+ Fix $y \in \mathbb R^n$ and let $P y$ be defined as in {eq}`exp_for_op`.
308312
309313Clearly, $P y \in S$.
310314
@@ -445,7 +449,9 @@ The next theorem shows that a best approximation is well defined and unique.
445449
446450The proof uses the {prf: ref }` opt ` .
447451
448- ``` {prf:theorem} The unique minimizer of $\| y - X b \| $ over $b \in \mathbb R^K$ is
452+ ``` {prf:theorem}
453+
454+ The unique minimizer of $\| y - X b \|$ over $b \in \mathbb R^K$ is
449455
450456$$
451457\hat \beta := (X' X)^{-1} X' y
@@ -628,7 +634,9 @@ The next section gives details.
628634(gram_schmidt)=
629635### Gram-Schmidt Orthogonalization
630636
631- ``` {prf:theorem} For each linearly independent set $\{ x_1, \ldots, x_k\} \subset \mathbb R^n$, there exists an
637+ ``` {prf:theorem}
638+
639+ For each linearly independent set $\{x_1, \ldots, x_k\} \subset \mathbb R^n$, there exists an
632640orthonormal set $\{u_1, \ldots, u_k\}$ with
633641
634642$$
@@ -657,7 +665,9 @@ In some exercises below, you are asked to implement this algorithm and test it u
657665
658666The following result uses the preceding algorithm to produce a useful decomposition.
659667
660- ``` {prf:theorem} If $X$ is $n \times k$ with linearly independent columns, then there exists a factorization $X = Q R$ where
668+ ``` {prf:theorem}
669+
670+ If $X$ is $n \times k$ with linearly independent columns, then there exists a factorization $X = Q R$ where
661671
662672* $R$ is $k \times k$, upper triangular, and nonsingular
663673* $Q$ is $n \times k$ with orthonormal columns
0 commit comments