Skip to content

arcticoder/lqg-volume-kernel-catalog

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LQG Volume Operator Spectral Analysis

This repository contains scripts and tools for computing and analyzing the spectrum of the Loop Quantum Gravity (LQG) volume operator and its kernel (zero-volume) states. The computations and reported counts below reflect the sampling and parameter ranges used by the included scripts; they are not exhaustive proofs of global properties.

📖 View the complete research documentation on GitHub Pages

Repository Name

lqg-volume-kernel-catalog

Description

Scripts to:

  • Compute the LQG volume operator spectrum via SU(2) 12j-symbols.
  • Identify trivial and non-trivial zero-volume states for 4-valent nodes.
  • Analyze kernel dimensions of the volume-squared matrix.
  • Generate LaTeX tables and figures summarizing results.
  • Validate the Diophantine characterization of zero-volume states.

Topics

loop-quantum-gravity volume-operator quantum-gravity su2 recoupling-theory 12j-symbols latex

Requirements

See requirements.txt for dependencies:

pip install -r requirements.txt

Usage

1. Analyze Zero-Volume States (4-valent)

python scripts/analyze_zero_volume_states.py
  • Scans a specified spin-configuration range (default j=0.5 to 3.0). Adjust the script arguments to explore other ranges.
  • Identifies trivial zero-volume states under the tested sampling and criteria (J₁₂ ∩ J₃₄ = ∅ where applicable).
  • Reports that no non-trivial zero-volume states were found within the tested range and parameter sweep; this is an empirical result for the scanned configurations (not a mathematical proof of absence).
  • Outputs summary statistics and generates:
    • results/kernel_dimension_distribution.png
    • results/zero_volume_catalog.json

2. Generate LaTeX Table of Trivial Zero-Volume States

python scripts/generate_latex_table.py
  • Produces results/trivial_zero_volume_table.tex with a single-column summary of trivial zero-volume cases.

3. Create Spin-1/2 Correlation Placeholder Figure

python scripts/generate_spin_half_correlation.py
  • Generates results/figures/spin_half_correlation.png showing the absence of non-trivial kernel states.

4. Generate Volume Spectrum (Optional)

python scripts/compute_volume_spectrum.py
  • Computes eigenvalues of the volume-squared operator for specified spin configurations.
  • Outputs to data/volume_spectrum.csv.

Results

  • Total configurations scanned (example run): 1,296 (default j_i ∈ {0.5, 1.0, …, 3.0}) — changeable via script arguments. These counts reflect the example run's sampling choices and are not exhaustive.
  • Trivial zero-volume states (example run): 60 (≈4.6%) — fraction observed in the example sweep; this varies with sampling and parameterization. When reporting these counts, publish the raw outputs and sampling metadata.
  • Non-trivial zero-volume states (example run): 0 observed in the example sweep (empirical result within the tested parameter range). Absence in a finite sampled set is not a mathematical proof of absence; for broader claims provide denser sampling and analytic checks.
  • Full-rank matrices (example run): 674 (≈52.0%) — reported for the example sweep.
  • Other kernel matrices (example run): 562 (≈43.4%) — reported for the example sweep.

All trivial zero-volume cases in the example sweep satisfy the Diophantine condition for the tested configurations:

max(|j₁−j₂|, |j₃−j₄|) > min(j₁+j₂, j₃+j₄)

Scope, Validation & Limitations

  • Scope: example numerical scans of the LQG volume operator kernel for 4-valent nodes within user-configurable spin ranges. Results are empirical and depend on the sampled range and discretization; treat summary counts as illustrative of the tested parameter set.
  • Validation: run python scripts/analyze_zero_volume_states.py --help to see runtime options. To reproduce example results, run the script with the default parameters and attach the generated results/ artifacts (JSON/CSV + plotting scripts) and the runtime metadata (seed, environment, args).
  • Limitations: the scripts perform finite, discrete scans. Absence of a configuration in the sampled set does not constitute a mathematical proof of absence. For stronger claims, increase sampling density, include symbolic or analytic checks where possible, and publish sensitivity analyses demonstrating robustness to sampling choices.

Directory Structure

├── scripts/
│   ├── analyze_zero_volume_states.py
│   ├── generate_latex_table.py
│   ├── generate_spin_half_correlation.py
│   ├── compute_volume_spectrum.py
│   └── ...
├── results/
│   ├── trivial_zero_volume_table.tex
│   ├── zero_volume_catalog.json
│   ├── kernel_dimension_distribution.png
│   └── figures/
│       └── spin_half_correlation.png
├── data/
│   └── volume_spectrum.csv
├── README.md
└── requirements.txt