Skip to content

AI-powered clinical decision support system designed for primary care physicians to manage CKD patients. It combines real-time patient monitoring, evidence-based risk assessment, and AI-driven treatment recommendations to help doctors identify kidney disease early, track progression accurately, and optimize treatment strategies.

Notifications You must be signed in to change notification settings

danribes/hack_BI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RENALGUARD AI - Intelligent Chronic Kidney Disease Management Platform

RENALGUARD AI Status KDIGO

What is RENALGUARD AI?

RENALGUARD AI is an advanced artificial intelligence-powered clinical decision support system designed specifically for primary care physicians to manage chronic kidney disease (CKD) patients. The platform combines real-time patient monitoring, evidence-based risk assessment, and AI-driven treatment recommendations to help doctors identify kidney disease early, track progression accurately, and optimize treatment strategies.

The Problem We Solve

Chronic kidney disease affects 1 in 7 adults globally, yet it often goes undiagnosed until advanced stages. Primary care physicians face multiple challenges:

  • Early Detection Gaps: CKD is often asymptomatic until significant kidney damage occurs
  • Complex Risk Stratification: Manual KDIGO classification is time-consuming and error-prone
  • Treatment Decision Burden: Determining when to initiate RAS inhibitors, SGLT2 inhibitors, or refer to nephrology requires constant guideline consultation
  • Lab Result Overload: Distinguishing clinically significant changes from normal variation is challenging
  • Transition Monitoring: Tracking patients moving between non-CKD and CKD status requires special attention

Our Solution

RENALGUARD AI acts as an intelligent co-pilot for primary care physicians, enabling early detection, proactive monitoring, and timely treatment of CKD. By identifying kidney disease before symptoms appear and guiding evidence-based interventions, we help:

  • Increase patient quality of life through early treatment before irreversible damage occurs
  • Reduce hospitalization costs by preventing progression to kidney failure and dialysis
  • Empower doctors with AI-powered decision support to determine the best next steps for each patient

Live Demo

Service Status URL
Database ✅ Live PostgreSQL (Internal)
Backend ✅ Live https://ckd-analyzer-backend.onrender.com
Frontend ✅ Live https://ckd-analyzer-frontend.onrender.com

Try it now: https://ckd-analyzer-frontend.onrender.com


Clinical Value: Why Early CKD Detection Matters

The Cost of Late Detection

  • Dialysis costs $90,000+/year per patient in the United States
  • 50% of patients reaching Stage 5 CKD were not aware they had kidney disease
  • Early treatment can slow progression by 30-50% and delay dialysis by years

How RENALGUARD AI Changes Outcomes

Without RENALGUARD AI With RENALGUARD AI
CKD often detected at Stage 3-4 Early detection at Stage 1-2 through risk screening
Manual risk calculation is time-consuming Automated GCUA cardiorenal risk assessment (Nelson, AHA PREVENT, Bansal)
Treatment decisions require guideline lookup AI provides instant KDIGO 2024 recommendations
Lab changes may go unnoticed Smart alerts flag clinically significant changes only
Patient monitoring is reactive Proactive monitoring with trend detection

System Integration: How RENALGUARD AI Works in Primary Care

Data Acquisition from EHR Systems

When deployed in a primary care setting, RENALGUARD AI integrates with existing Electronic Health Record (EHR) systems to automatically acquire patient data:

┌─────────────────────────────────────────────────────────────────────────────┐
│                    PRIMARY CARE IT INFRASTRUCTURE                            │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                             │
│   ┌─────────────────┐         ┌─────────────────┐         ┌─────────────┐  │
│   │   EHR SYSTEM    │         │  LABORATORY     │         │   PHARMACY  │  │
│   │   (Epic, Cerner │         │  INFORMATION    │         │   SYSTEM    │  │
│   │    Meditech)    │         │  SYSTEM (LIS)   │         │   (PBM)     │  │
│   └────────┬────────┘         └────────┬────────┘         └──────┬──────┘  │
│            │                           │                         │         │
│            │  HL7 FHIR API             │  HL7v2/FHIR             │ NCPDP   │
│            │  (Patient Data)           │  (Lab Results)          │ (Rx)    │
│            │                           │                         │         │
│            └───────────────────────────┼─────────────────────────┘         │
│                                        │                                    │
│                                        ▼                                    │
│                    ┌───────────────────────────────────────┐               │
│                    │       RENALGUARD AI PLATFORM          │               │
│                    │                                       │               │
│                    │  ┌─────────────────────────────────┐  │               │
│                    │  │     INTEGRATION LAYER           │  │               │
│                    │  │  • FHIR R4 Client               │  │               │
│                    │  │  • HL7v2 Message Parser         │  │               │
│                    │  │  • ADT Feed Processor           │  │               │
│                    │  │  • Batch Import Engine          │  │               │
│                    │  └─────────────────────────────────┘  │               │
│                    │                  │                    │               │
│                    │                  ▼                    │               │
│                    │  ┌─────────────────────────────────┐  │               │
│                    │  │     POSTGRESQL DATABASE         │  │               │
│                    │  │  Patients, Observations,        │  │               │
│                    │  │  Conditions, Medications        │  │               │
│                    │  └─────────────────────────────────┘  │               │
│                    └───────────────────────────────────────┘               │
│                                                                             │
└─────────────────────────────────────────────────────────────────────────────┘

Supported Integration Methods:

Method Use Case Data Types Frequency
HL7 FHIR R4 API Real-time patient data Patient demographics, conditions, medications Real-time
HL7v2 Messages Lab result feeds ORU (lab results), ADT (admissions) Real-time/Batch
ADT Feeds Patient registration New patients, updates, transfers Real-time
Batch File Import Historical data migration All patient data types Overnight
Direct Database Link High-volume clinics All data Configurable

Overnight Batch Processing Workflow

RENALGUARD AI performs comprehensive batch processing during off-peak hours (typically 2:00 AM - 5:00 AM) to ensure all patient risk assessments are current without impacting daytime system performance:

┌─────────────────────────────────────────────────────────────────────────────┐
│                     OVERNIGHT BATCH PROCESSING TIMELINE                      │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                             │
│  2:00 AM ─────────────────────────────────────────────────────────► 5:00 AM │
│                                                                             │
│  ┌──────────┐  ┌──────────┐  ┌──────────┐  ┌──────────┐  ┌──────────┐      │
│  │  PHASE 1 │  │  PHASE 2 │  │  PHASE 3 │  │  PHASE 4 │  │  PHASE 5 │      │
│  │  DATA    │  │  RISK    │  │  CHANGE  │  │  ALERT   │  │  REPORT  │      │
│  │  SYNC    │  │  CALC    │  │  DETECT  │  │  GENERATE│  │  PREPARE │      │
│  └──────────┘  └──────────┘  └──────────┘  └──────────┘  └──────────┘      │
│                                                                             │
│  2:00-2:30     2:30-3:30     3:30-4:00     4:00-4:30     4:30-5:00         │
│                                                                             │
└─────────────────────────────────────────────────────────────────────────────┘

Phase 1: Data Synchronization (2:00 AM - 2:30 AM)

┌─────────────────────────────────────────────────────────────┐
│ BATCH JOB: sync_ehr_data                                    │
├─────────────────────────────────────────────────────────────┤
│ 1. Pull new patients registered in last 24 hours            │
│ 2. Import lab results from Laboratory Information System    │
│ 3. Update medication lists from pharmacy feeds              │
│ 4. Sync condition/diagnosis codes from EHR                  │
│ 5. Validate data integrity and flag discrepancies           │
└─────────────────────────────────────────────────────────────┘

Phase 2: Risk Calculation (2:30 AM - 3:30 AM)

┌─────────────────────────────────────────────────────────────┐
│ BATCH JOB: calculate_all_risks                              │
├─────────────────────────────────────────────────────────────┤
│ FOR EACH patient in database:                               │
│                                                             │
│   IF patient.age >= 60 AND patient.eGFR >= 60:             │
│      → Run GCUA Assessment (algorithmic)                    │
│        • Nelson/CKD-PC renal risk calculation               │
│        • AHA PREVENT CVD risk calculation                   │
│        • Bansal mortality risk calculation                  │
│        • Assign phenotype (I, II, III, IV, Moderate, Low)   │
│                                                             │
│   IF patient has CKD diagnosis OR eGFR < 60:               │
│      → Run KDIGO Classification (algorithmic)               │
│        • Calculate GFR category (G1-G5)                     │
│        • Calculate albuminuria category (A1-A3)             │
│        • Assign combined risk level                         │
│        • Determine monitoring frequency                     │
│                                                             │
│   → Store results in risk_assessments table                 │
└─────────────────────────────────────────────────────────────┘

Phase 3: Change Detection (3:30 AM - 4:00 AM)

┌─────────────────────────────────────────────────────────────┐
│ BATCH JOB: detect_significant_changes                       │
├─────────────────────────────────────────────────────────────┤
│ Compare current vs previous values:                         │
│                                                             │
│ • eGFR change > 5 ml/min in 3 months         → FLAG        │
│ • uACR increase > 30%                         → FLAG        │
│ • New CKD diagnosis (transition from non-CKD) → FLAG        │
│ • GCUA phenotype change                       → FLAG        │
│ • KDIGO stage progression                     → FLAG        │
│ • Treatment gap detected                      → FLAG        │
│                                                             │
│ Flagged patients → clinical_alerts queue                    │
└─────────────────────────────────────────────────────────────┘

Phase 4: Alert Generation (4:00 AM - 4:30 AM)

┌─────────────────────────────────────────────────────────────┐
│ BATCH JOB: generate_clinical_alerts                         │
├─────────────────────────────────────────────────────────────┤
│ FOR EACH flagged patient:                                   │
│                                                             │
│   1. Determine alert priority (CRITICAL/HIGH/MODERATE)      │
│   2. Assign to appropriate doctor                           │
│   3. Generate alert notification                            │
│   4. Queue email if configured                              │
│                                                             │
│ Alert prioritization rules:                                 │
│ • CRITICAL: eGFR < 15, rapid decline >10 ml/min/year       │
│ • HIGH: New CKD diagnosis, phenotype I/II                   │
│ • MODERATE: Stage progression, treatment gaps               │
└─────────────────────────────────────────────────────────────┘

Phase 5: Report Preparation (4:30 AM - 5:00 AM)

┌─────────────────────────────────────────────────────────────┐
│ BATCH JOB: prepare_daily_reports                            │
├─────────────────────────────────────────────────────────────┤
│ Generate for each doctor:                                   │
│                                                             │
│ • Daily patient alert summary                               │
│ • High-risk patient list requiring attention                │
│ • Treatment gap report                                      │
│ • Screening compliance report                               │
│ • Population risk distribution update                       │
│                                                             │
│ All reports ready when clinic opens at 8:00 AM              │
└─────────────────────────────────────────────────────────────┘

Patient Classification: Algorithm vs AI

IMPORTANT DISTINCTION: Patient risk classification in RENALGUARD AI uses validated clinical algorithms, NOT artificial intelligence. AI is used only for interpretation and communication.

┌─────────────────────────────────────────────────────────────────────────────┐
│                    CLASSIFICATION: ALGORITHM VS AI                           │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                             │
│  ┌─────────────────────────────────────────────────────────────────────┐   │
│  │                    ALGORITHMIC (Deterministic)                       │   │
│  │                    ✓ Reproducible, Auditable, Evidence-Based         │   │
│  ├─────────────────────────────────────────────────────────────────────┤   │
│  │                                                                      │   │
│  │  GCUA RISK CALCULATION                                               │   │
│  │  ├── Nelson/CKD-PC Equation (validated on 5M+ patients)             │   │
│  │  │   Formula: logit = β₀ + β₁(age) + β₂(eGFR) + β₃(uACR) + ...     │   │
│  │  │   Output: 5-year renal risk percentage                           │   │
│  │  │                                                                   │   │
│  │  ├── AHA PREVENT Equation (2024 guidelines)                         │   │
│  │  │   Formula: PCE with eGFR/uACR integration                        │   │
│  │  │   Output: 10-year CVD risk percentage                            │   │
│  │  │                                                                   │   │
│  │  └── Bansal Mortality Score                                         │   │
│  │      Formula: Points-based geriatric assessment                     │   │
│  │      Output: 5-year mortality risk percentage                       │   │
│  │                                                                      │   │
│  │  KDIGO CLASSIFICATION                                                │   │
│  │  ├── GFR Category: Direct threshold lookup                          │   │
│  │  │   G1: ≥90, G2: 60-89, G3a: 45-59, G3b: 30-44, G4: 15-29, G5: <15│   │
│  │  │                                                                   │   │
│  │  └── Albuminuria Category: Direct threshold lookup                  │   │
│  │      A1: <30, A2: 30-300, A3: >300 mg/g                             │   │
│  │                                                                      │   │
│  │  PHENOTYPE ASSIGNMENT                                                │   │
│  │  └── Rule-based decision tree (if renal≥15% AND cvd≥20% → Type I)  │   │
│  │                                                                      │   │
│  └─────────────────────────────────────────────────────────────────────┘   │
│                                                                             │
│  ┌─────────────────────────────────────────────────────────────────────┐   │
│  │                    AI-POWERED (Claude Sonnet 4.5)                    │   │
│  │                    Used for Interpretation & Communication Only      │   │
│  ├─────────────────────────────────────────────────────────────────────┤   │
│  │                                                                      │   │
│  │  WHAT AI DOES:                                                       │   │
│  │  ├── Explains classification results in natural language            │   │
│  │  │   "This patient is Phenotype I because both renal and CVD        │   │
│  │  │    risks exceed thresholds, indicating accelerated aging..."     │   │
│  │  │                                                                   │   │
│  │  ├── Answers doctor questions about patient care                    │   │
│  │  │   "Should I start this patient on an SGLT2 inhibitor?"          │   │
│  │  │                                                                   │   │
│  │  ├── Generates clinical narratives for significant changes          │   │
│  │  │   "eGFR declined from 58 to 52 over 3 months, suggesting..."    │   │
│  │  │                                                                   │   │
│  │  └── Provides treatment recommendations in conversational format    │   │
│  │      "Based on KDIGO 2024 guidelines, I recommend..."               │   │
│  │                                                                      │   │
│  │  WHAT AI DOES NOT DO:                                                │   │
│  │  ✗ Calculate risk scores (uses algorithms)                          │   │
│  │  ✗ Assign KDIGO stages (uses thresholds)                            │   │
│  │  ✗ Determine phenotypes (uses decision rules)                       │   │
│  │  ✗ Make final treatment decisions (doctor decides)                  │   │
│  │                                                                      │   │
│  └─────────────────────────────────────────────────────────────────────┘   │
│                                                                             │
└─────────────────────────────────────────────────────────────────────────────┘

New Patient Workflow: From Registration to Classification

When a new patient enters the system, here's the complete workflow:

┌─────────────────────────────────────────────────────────────────────────────┐
│                    NEW PATIENT CLASSIFICATION WORKFLOW                       │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                             │
│  STEP 1: PATIENT REGISTRATION                                               │
│  ┌─────────────────────────────────────────────────────────────────────┐   │
│  │ Source: ADT feed from EHR or manual entry                           │   │
│  │ Data captured: Name, DOB, Sex, MRN, Insurance, Contact              │   │
│  │ Trigger: ADT^A04 (Register) or ADT^A01 (Admit) message              │   │
│  └─────────────────────────────────────────────────────────────────────┘   │
│                               │                                             │
│                               ▼                                             │
│  STEP 2: INITIAL DATA COLLECTION                                            │
│  ┌─────────────────────────────────────────────────────────────────────┐   │
│  │ System queries EHR for:                                              │   │
│  │ • Latest lab results (eGFR, uACR, creatinine, HbA1c)                │   │
│  │ • Active conditions (diabetes, hypertension, CVD, heart failure)    │   │
│  │ • Current medications (SGLT2i, RASi, statins)                       │   │
│  │ • Vital signs (blood pressure, weight, height)                      │   │
│  └─────────────────────────────────────────────────────────────────────┘   │
│                               │                                             │
│                               ▼                                             │
│  STEP 3: ELIGIBILITY CHECK (Algorithmic)                                    │
│  ┌─────────────────────────────────────────────────────────────────────┐   │
│  │                                                                      │   │
│  │   Patient Age ≥ 60?  ───YES───►  Has eGFR data?  ───YES───►         │   │
│  │        │                              │                              │   │
│  │        NO                             NO                             │   │
│  │        │                              │                              │   │
│  │        ▼                              ▼                              │   │
│  │   Standard risk              Flag for lab order                      │   │
│  │   screening only             (eGFR + uACR needed)                    │   │
│  │                                                                      │   │
│  │   IF eGFR ≥ 60: Eligible for GCUA assessment                        │   │
│  │   IF eGFR < 60: Direct to KDIGO classification (has CKD)            │   │
│  │                                                                      │   │
│  └─────────────────────────────────────────────────────────────────────┘   │
│                               │                                             │
│                               ▼                                             │
│  STEP 4: RISK CLASSIFICATION (Algorithmic - No AI)                          │
│  ┌─────────────────────────────────────────────────────────────────────┐   │
│  │                                                                      │   │
│  │   PATH A: Non-CKD Patient (eGFR ≥ 60, Age 60+)                      │   │
│  │   ┌─────────────────────────────────────────────────────────────┐   │   │
│  │   │ GCUA ASSESSMENT (Pure Algorithm)                            │   │   │
│  │   │                                                             │   │   │
│  │   │ Input variables:                                            │   │   │
│  │   │ • Age, Sex, Race                                            │   │   │
│  │   │ • eGFR, uACR (if available)                                 │   │   │
│  │   │ • Diabetes (yes/no), Hypertension (yes/no)                  │   │   │
│  │   │ • CVD history, Heart failure                                │   │   │
│  │   │ • Current medications (SGLT2i, RASi)                        │   │   │
│  │   │                                                             │   │   │
│  │   │ Calculations performed:                                     │   │   │
│  │   │ 1. Nelson renal_risk = sigmoid(Σ βᵢxᵢ) × 100%              │   │   │
│  │   │ 2. PREVENT cvd_risk = PCE_formula(inputs) × 100%           │   │   │
│  │   │ 3. Bansal mortality = points_lookup(inputs) × 100%         │   │   │
│  │   │                                                             │   │   │
│  │   │ Phenotype assignment (rule-based):                          │   │   │
│  │   │ IF mortality ≥ 50%           → Phenotype IV (Senescent)    │   │   │
│  │   │ ELSE IF renal ≥15% AND cvd ≥20% → Phenotype I (Accelerated)│   │   │
│  │   │ ELSE IF renal ≥15% AND cvd <7.5% → Phenotype II (Silent)   │   │   │
│  │   │ ELSE IF renal <5% AND cvd ≥20%  → Phenotype III (Vascular) │   │   │
│  │   │ ELSE IF renal 5-14.9%           → Moderate Risk            │   │   │
│  │   │ ELSE                            → Low Risk                  │   │   │
│  │   └─────────────────────────────────────────────────────────────┘   │   │
│  │                                                                      │   │
│  │   PATH B: CKD Patient (eGFR < 60 OR uACR ≥ 30 persistent)           │   │
│  │   ┌─────────────────────────────────────────────────────────────┐   │   │
│  │   │ KDIGO CLASSIFICATION (Pure Algorithm)                       │   │   │
│  │   │                                                             │   │   │
│  │   │ GFR Category (direct threshold):                            │   │   │
│  │   │ • G1: eGFR ≥ 90    → Normal or high                        │   │   │
│  │   │ • G2: eGFR 60-89   → Mildly decreased                      │   │   │
│  │   │ • G3a: eGFR 45-59  → Mild-moderate decrease                │   │   │
│  │   │ • G3b: eGFR 30-44  → Moderate-severe decrease              │   │   │
│  │   │ • G4: eGFR 15-29   → Severely decreased                    │   │   │
│  │   │ • G5: eGFR < 15    → Kidney failure                        │   │   │
│  │   │                                                             │   │   │
│  │   │ Albuminuria Category (direct threshold):                    │   │   │
│  │   │ • A1: uACR < 30     → Normal                               │   │   │
│  │   │ • A2: uACR 30-300   → Moderately increased                 │   │   │
│  │   │ • A3: uACR > 300    → Severely increased                   │   │   │
│  │   │                                                             │   │   │
│  │   │ Combined Risk (lookup table):                               │   │   │
│  │   │ • Green: Low risk                                          │   │   │
│  │   │ • Yellow: Moderate risk                                    │   │   │
│  │   │ • Orange: High risk                                        │   │   │
│  │   │ • Red: Very high risk                                      │   │   │
│  │   └─────────────────────────────────────────────────────────────┘   │   │
│  │                                                                      │   │
│  └─────────────────────────────────────────────────────────────────────┘   │
│                               │                                             │
│                               ▼                                             │
│  STEP 5: STORE RESULTS                                                      │
│  ┌─────────────────────────────────────────────────────────────────────┐   │
│  │ Database tables updated:                                             │   │
│  │ • patient_risk_factors: Risk scores, phenotype                      │   │
│  │ • patient_gcua_assessments: Full GCUA results (non-CKD)             │   │
│  │ • ckd_patient_data: KDIGO stage, severity (CKD patients)            │   │
│  │ • non_ckd_patient_data: Screening status (non-CKD patients)         │   │
│  │                                                                      │   │
│  │ Classification timestamp recorded for audit trail                    │   │
│  └─────────────────────────────────────────────────────────────────────┘   │
│                               │                                             │
│                               ▼                                             │
│  STEP 6: ALERT IF HIGH RISK                                                 │
│  ┌─────────────────────────────────────────────────────────────────────┐   │
│  │ IF Phenotype I or II → Generate HIGH priority alert                 │   │
│  │ IF KDIGO Very High   → Generate HIGH priority alert                 │   │
│  │ IF eGFR < 30         → Generate CRITICAL alert + nephrology flag    │   │
│  │                                                                      │   │
│  │ Alert sent to assigned doctor for review                            │   │
│  └─────────────────────────────────────────────────────────────────────┘   │
│                               │                                             │
│                               ▼                                             │
│  STEP 7: AI INTERPRETATION (Optional, On-Demand)                            │
│  ┌─────────────────────────────────────────────────────────────────────┐   │
│  │ When doctor opens patient record or asks a question:                │   │
│  │                                                                      │   │
│  │ AI (Claude) generates natural language summary:                     │   │
│  │                                                                      │   │
│  │ "Mrs. Johnson is a 72-year-old female classified as GCUA            │   │
│  │  Phenotype I (Accelerated Ager) based on:                           │   │
│  │  • 5-year renal risk: 18.3% (High)                                  │   │
│  │  • 10-year CVD risk: 24.7% (High)                                   │   │
│  │  • 5-year mortality: 12.4% (Low)                                    │   │
│  │                                                                      │   │
│  │  Recommendation: Consider initiating SGLT2 inhibitor and RAS        │   │
│  │  inhibitor therapy. Home monitoring with Minuteful Kidney           │   │
│  │  recommended for early CKD detection."                              │   │
│  │                                                                      │   │
│  │ ⚠️ AI explanation uses pre-calculated algorithmic results           │   │
│  │    AI does NOT recalculate or modify the classification             │   │
│  └─────────────────────────────────────────────────────────────────────┘   │
│                                                                             │
└─────────────────────────────────────────────────────────────────────────────┘

Key Principles:

Aspect Approach Why
Risk Calculation Pure algorithm Reproducible, auditable, based on validated clinical studies
Classification Rule-based thresholds Consistent with KDIGO 2024 guidelines, no ambiguity
Phenotype Assignment Decision tree Deterministic, same inputs always produce same output
Interpretation AI (Claude) Natural language explanations help doctors understand results
Recommendations AI with MCP tools AI consults real data before making suggestions
Final Decisions Doctor AI assists, doctor decides

Audit Trail:

  • Every classification includes timestamp and algorithm version
  • Risk score inputs are stored for reproducibility
  • Any manual overrides are logged with reason
  • AI interactions are recorded for compliance

Where AI Is Used in RENALGUARD

RENALGUARD AI leverages artificial intelligence at multiple levels to provide comprehensive clinical decision support:

1. AI-Powered Clinical Analysis (Anthropic Claude)

Core AI Engine: Claude Sonnet 4.5 by Anthropic powers the intelligent analysis system.

  • Patient Update Analysis: Every lab result triggers AI analysis to detect clinically significant changes
  • Treatment Recommendations: AI validates recommendations against current treatment status and contraindications
  • Doctor Assistant Chat: Natural language conversations about patient care, treatment options, and clinical guidelines
  • Transition Detection: AI explains when patients move from non-CKD to CKD status and its clinical implications

2. Risk Prediction Models

GCUA - Geriatric Cardiorenal Unified Assessment (For Patients 60+)

GCUA is a comprehensive risk stratification system integrating three validated prediction models:

Module 1: Nelson/CKD-PC Incident CKD Equation (2019)

  • Predicts 5-year probability of developing CKD (eGFR < 60)
  • Derived from 34 multinational cohorts with >5 million individuals
  • C-statistic: 0.845 (non-diabetic), 0.801 (diabetic)
  • Risk categories: Low (<5%), Moderate (5-14.9%), High (≥15%)

Module 2: AHA PREVENT CVD Risk Equation (2024)

  • 10-year risk of total cardiovascular disease events
  • Integrates the Cardiovascular-Kidney-Metabolic (CKM) syndrome
  • Key advancement over PCE: Includes eGFR/uACR as core variables
  • Risk categories: Low (<5%), Borderline (5-7.4%), Intermediate (7.5-19.9%), High (≥20%)

Module 3: Bansal Geriatric Mortality Score (2015)

  • Predicts 5-year all-cause mortality in older adults
  • Addresses the "competing risk" problem in geriatric patients
  • Risk categories: Low (<15%), Moderate (15-29.9%), High (30-49.9%), Very High (≥50%)

GCUA Phenotype Classification:

Phenotype Name Criteria Clinical Strategy
I Accelerated Ager High renal (≥15%) AND High CVD (≥20%) Aggressive dual intervention
II Silent Renal High renal (≥15%) AND Low CVD (<7.5%) Nephroprotection priority
III Vascular Dominant Low renal (<5%) AND High CVD (≥20%) CVD prevention protocols
IV The Senescent Mortality risk ≥50% Quality of life focus, deprescribing
Moderate Cardiorenal Moderate Moderate renal (5-14.9%) Preventive strategies
Low Low Risk Low across all domains Routine care

KDIGO 2024 Risk Stratification

  • Automatic classification based on eGFR and uACR
  • Heat map visualization: Green (low risk) to Red (very high risk)
  • Determines monitoring frequency and treatment urgency

Risk Stratification Maps

Non-CKD Patients: GCUA Phenotype Risk Map (Patients 60+)

For patients without diagnosed CKD (eGFR ≥ 60), the GCUA system classifies risk across three dimensions:

                           RENAL RISK (Nelson/CKD-PC 5-Year)
                    Low (<5%)      Moderate (5-14.9%)    High (≥15%)
                 ┌──────────────┬──────────────────────┬──────────────────┐
    High (≥20%)  │ PHENOTYPE III│    MODERATE RISK     │   PHENOTYPE I    │
   C             │   Vascular   │                      │  Accelerated     │
   V             │   Dominant   │  ● Elevated CVD      │     Ager         │
   D             │              │  ● Moderate renal    │                  │
                 │ ● Low renal  │  ● Preventive care   │ ● Highest risk   │
   R             │ ● High CVD   │                      │ ● Dual therapy   │
   I             │ ● Statin +   │                      │ ● SGLT2i + RASi  │
   S             │   BP control │                      │ ● Home monitor   │
   K             ├──────────────┼──────────────────────┼──────────────────┤
                 │              │                      │   PHENOTYPE II   │
   (AHA          │   LOW RISK   │    MODERATE RISK     │  Silent Renal    │
   PREVENT       │              │                      │                  │
   10-Year)      │ ● Routine    │  ● Moderate renal    │ ● High renal     │
                 │   care       │  ● Borderline CVD    │ ● Low CVD        │
    Low (<7.5%)  │ ● Annual     │  ● Lifestyle mods    │ ● Nephroprotect  │
                 │   checkup    │                      │ ● Home monitor   │
                 └──────────────┴──────────────────────┴──────────────────┘

    ⚠️ PHENOTYPE IV (The Senescent): Overrides above if Bansal mortality ≥50%
       → Quality of life focus, deprescribing consideration, palliative approach

Non-CKD Risk Actions by Phenotype:

Phenotype Risk Level Renal Risk CVD Risk Mortality Recommended Actions
I - Accelerated Ager 🔴 CRITICAL ≥15% ≥20% Any SGLT2i + RASi + Statin, Home monitoring, Nephrology consult
II - Silent Renal 🟠 HIGH ≥15% <7.5% Any SGLT2i + RASi, Home monitoring, Quarterly labs
III - Vascular Dominant 🟠 HIGH <5% ≥20% Any Statin + BP control, Cardiology focus, Biannual labs
IV - The Senescent ⚫ SPECIAL Any Any ≥50% Quality of life, Deprescribing, Avoid aggressive Tx
Moderate 🟡 MODERATE 5-14.9% 7.5-19.9% <50% Preventive strategies, Lifestyle mods, Biannual labs
Low 🟢 LOW <5% <7.5% <15% Routine care, Annual checkup, Standard screening

CKD Patients: KDIGO Heat Map Risk Matrix

For patients with diagnosed CKD, the KDIGO 2024 guidelines classify risk using eGFR and albuminuria:

                              ALBUMINURIA CATEGORIES (uACR mg/g)
                     A1                    A2                    A3
                  Normal           Moderately Increased    Severely Increased
                   <30                  30-300                  >300
              ┌─────────────────┬─────────────────────┬─────────────────────┐
    G1        │                 │                     │                     │
    ≥90       │  🟢 LOW RISK    │   🟡 MODERATE       │   🟠 HIGH           │
    Normal    │                 │                     │                     │
              │  Monitor: 1/yr  │  Monitor: 1/yr      │  Monitor: 2/yr      │
              ├─────────────────┼─────────────────────┼─────────────────────┤
    G2        │                 │                     │                     │
    60-89     │  🟢 LOW RISK    │   🟡 MODERATE       │   🟠 HIGH           │
    Mild ↓    │                 │                     │                     │
              │  Monitor: 1/yr  │  Monitor: 1/yr      │  Monitor: 2/yr      │
  e ├─────────────────┼─────────────────────┼─────────────────────┤
  G G3a       │                 │                     │                     │
  F 45-59     │  🟡 MODERATE    │   🟠 HIGH           │   🔴 VERY HIGH      │
  R Mild-Mod  │                 │                     │                     │
              │  Monitor: 1/yr  │  Monitor: 2/yr      │  Monitor: 3/yr      │
              ├─────────────────┼─────────────────────┼─────────────────────┤
    G3b       │                 │                     │                     │
    30-44     │  🟠 HIGH        │   🔴 VERY HIGH      │   🔴 VERY HIGH      │
    Mod-Sev   │                 │                     │                     │
              │  Monitor: 2/yr  │  Monitor: 3/yr      │  Monitor: 4/yr      │
              ├─────────────────┼─────────────────────┼─────────────────────┤
    G4        │                 │                     │                     │
    15-29     │  🔴 VERY HIGH   │   🔴 VERY HIGH      │   🔴 VERY HIGH      │
    Severe    │                 │   Nephrology        │   Nephrology        │
              │  Monitor: 3/yr  │  Monitor: 4/yr      │  Monitor: 4+/yr     │
              ├─────────────────┼─────────────────────┼─────────────────────┤
    G5        │                 │                     │                     │
    <15       │  🔴 VERY HIGH   │   🔴 VERY HIGH      │   🔴 VERY HIGH      │
    Failure   │   Nephrology    │   Nephrology        │   Nephrology        │
              │  RRT Planning   │  RRT Planning       │  RRT Planning       │
              └─────────────────┴─────────────────────┴─────────────────────┘

    Legend: Monitor = recommended lab frequency per year
            RRT = Renal Replacement Therapy (dialysis/transplant)

CKD Stage Risk Actions:

Stage eGFR Range Risk Level Treatment Priority Key Actions
G1 ≥90 🟢-🟠 Varies by uACR Address cause Treat underlying condition, BP control, Annual monitoring
G2 60-89 🟢-🟠 Varies by uACR Early intervention Lifestyle mods, RASi if proteinuria, Annual monitoring
G3a 45-59 🟡-🔴 Moderate-Very High Active nephroprotection RASi + SGLT2i, Avoid nephrotoxins, 1-3x/year monitoring
G3b 30-44 🟠-🔴 High-Very High Aggressive treatment RASi + SGLT2i, Dose adjust meds, Consider MRA, 2-4x/year
G4 15-29 🔴 Very High Pre-dialysis care Nephrology co-management, RRT education, 3-4x/year
G5 <15 🔴 Critical RRT planning Dialysis/transplant planning, Vascular access, Monthly

Albuminuria Impact on Treatment:

Category uACR (mg/g) Risk Modifier Treatment Implications
A1 <30 Baseline Standard care, focus on eGFR trends
A2 30-300 +1 Risk Level RASi strongly indicated, Target BP <130/80
A3 >300 +2 Risk Levels Aggressive RASi + SGLT2i, Consider MRA, Monthly uACR

Combined Risk: Transition from Non-CKD to CKD

When a non-CKD patient develops CKD, their risk classification transitions:

┌─────────────────────────────────────────────────────────────────────────────┐
│                    PATIENT JOURNEY: RISK EVOLUTION                          │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                             │
│   NON-CKD PHASE                         CKD PHASE                           │
│   (GCUA Classification)                 (KDIGO Classification)              │
│                                                                             │
│   ┌───────────────┐                     ┌───────────────┐                   │
│   │ PHENOTYPE I   │ ──── Develops ────► │ Stage 3a+     │                   │
│   │ Accelerated   │      CKD            │ High/Very High│                   │
│   │ Ager          │                     │ Risk          │                   │
│   └───────────────┘                     └───────────────┘                   │
│   Action: Prevented                     Action: Nephrology                  │
│   with early Tx                         co-management                       │
│                                                                             │
│   ┌───────────────┐                     ┌───────────────┐                   │
│   │ PHENOTYPE II  │ ──── Develops ────► │ Stage 2-3a    │                   │
│   │ Silent Renal  │      CKD            │ Moderate/High │                   │
│   │               │                     │ Risk          │                   │
│   └───────────────┘                     └───────────────┘                   │
│   Action: Early                         Action: Continue                    │
│   nephroprotection                      nephroprotection                    │
│                                                                             │
│   ┌───────────────┐                     ┌───────────────┐                   │
│   │ MODERATE      │ ──── Develops ────► │ Stage 1-2     │                   │
│   │ RISK          │      CKD            │ Low/Moderate  │                   │
│   │               │                     │ Risk          │                   │
│   └───────────────┘                     └───────────────┘                   │
│   Action: Preventive                    Action: Initiate                    │
│   strategies                            treatment                           │
│                                                                             │
│   ┌───────────────┐                                                         │
│   │ LOW RISK      │ ──── Rarely develops CKD with proper monitoring ────►   │
│   └───────────────┘                                                         │
│                                                                             │
└─────────────────────────────────────────────────────────────────────────────┘

Key Insight: RENALGUARD AI preserves the patient's GCUA phenotype history even after CKD diagnosis, allowing clinicians to understand the patient's complete cardiorenal risk trajectory.

3. Model Context Protocol (MCP) Clinical Tools

A comprehensive suite of 16+ specialized clinical decision support tools:

Phase-Based Assessment:

  • phase1_pre_diagnosis_risk: 3-tier risk stratification for non-CKD patients
  • phase2_kdigo_classification: KDIGO staging with trajectory analysis (RAPID/MODERATE/SLOW/STABLE)
  • phase3_treatment_decision: Treatment eligibility and contraindication checking
  • phase4_adherence_monitoring: MPR/PDC metrics and barrier identification

Risk Prediction:

  • comprehensive_ckd_analysis: Master orchestrator for complete patient assessment
  • assess_gcua_risk: GCUA cardiorenal assessment (Nelson, AHA PREVENT, Bansal)
  • predict_kidney_failure_risk: KFRE 2-year and 5-year kidney failure predictions
  • calculate_egfr: CKD-EPI equation with cystatin C alternative

Medication & Safety:

  • assess_treatment_options: Jardiance, RAS inhibitor, statin eligibility
  • assess_medication_safety: Dose adjustments, drug interactions, contraindications
  • composite_adherence_monitoring: Multi-medication adherence tracking

Monitoring & Compliance:

  • analyze_adherence: Medication and screening adherence patterns
  • check_screening_protocol: Screening guideline compliance and gap detection

Data & Reference:

  • lab_results: Historical lab value retrieval with trend analysis
  • patient_data: Demographics, medications, comorbidity aggregation
  • population_stats: Cohort analytics and outcome tracking
  • guidelines: KDIGO guideline lookup and best practice protocols

4. How MCP Architecture Prevents AI Hallucination

The Problem with General AI in Healthcare: Large Language Models (LLMs) can "hallucinate" - generating plausible-sounding but factually incorrect information. In healthcare, this could mean:

  • Recommending medications the patient is already taking
  • Missing critical lab abnormalities
  • Suggesting treatments contraindicated by patient conditions
  • Inventing patient history that doesn't exist

Our Solution: Grounding AI in Real Patient Data

RENALGUARD AI uses the Model Context Protocol (MCP) to eliminate hallucination by ensuring every AI response is grounded in actual patient data from the PostgreSQL database:

┌─────────────────────────────────────────────────────────────────┐
│                      DOCTOR'S QUESTION                          │
│        "Should I start this patient on an SGLT2 inhibitor?"     │
└─────────────────────────────────────────────────────────────────┘
                              │
                              ▼
┌─────────────────────────────────────────────────────────────────┐
│                     CLAUDE AI (Anthropic)                        │
│   Receives question + system prompt with clinical guidelines     │
│   DOES NOT GUESS - calls MCP tools to get real data             │
└─────────────────────────────────────────────────────────────────┘
                              │
        ┌─────────────────────┼─────────────────────┐
        ▼                     ▼                     ▼
┌───────────────┐   ┌───────────────┐   ┌───────────────┐
│  MCP TOOL:    │   │  MCP TOOL:    │   │  MCP TOOL:    │
│ patient_data  │   │ lab_results   │   │ assess_       │
│               │   │               │   │ treatment_    │
│ Gets: age,    │   │ Gets: eGFR,   │   │ options       │
│ conditions,   │   │ uACR, trends, │   │               │
│ medications   │   │ recent labs   │   │ Checks:       │
│ from database │   │ from database │   │ eligibility,  │
│               │   │               │   │ contraindica- │
│               │   │               │   │ tions         │
└───────────────┘   └───────────────┘   └───────────────┘
        │                     │                     │
        └─────────────────────┼─────────────────────┘
                              ▼
┌─────────────────────────────────────────────────────────────────┐
│                    POSTGRESQL DATABASE                           │
│   Real patient data: observations, conditions, medications       │
│   Verified lab values with timestamps and units                  │
│   Treatment history and adherence records                        │
└─────────────────────────────────────────────────────────────────┘
                              │
                              ▼
┌─────────────────────────────────────────────────────────────────┐
│                    AI RESPONSE (GROUNDED)                        │
│   "Based on the patient's eGFR of 45 (from lab on Nov 15),      │
│    I recommend starting empagliflozin. Patient is NOT currently  │
│    on SGLT2i and eGFR > 20 meets eligibility criteria."         │
└─────────────────────────────────────────────────────────────────┘

Why This Architecture Eliminates Hallucination:

Without MCP With MCP (RENALGUARD)
AI might guess "patient probably has diabetes" MCP tool queries database: patient HAS diabetes (ICD-10: E11.9)
AI might say "consider checking eGFR" MCP returns actual eGFR: 45 ml/min from 2025-11-15 lab
AI might miss that patient is already on medication MCP checks active medications: already on lisinopril 10mg
AI might recommend wrong dosage MCP returns renal dose adjustment based on actual eGFR
AI might miss contraindications MCP checks conditions table for allergies, interactions

Technical Implementation:

  1. Structured Tool Calls: Every MCP tool has a defined JSON schema for inputs and outputs, ensuring data consistency
  2. Database-First: All patient information comes directly from PostgreSQL queries, not AI memory or training data
  3. Audit Trail: Every tool call is logged, providing traceability for clinical decisions
  4. Fail-Safe Design: If database is unavailable, AI explicitly states "unable to retrieve patient data" rather than guessing

Example: How a Treatment Decision Works

When a doctor asks "Should I start treatment?", the AI:

  1. Calls patient_data → Gets patient ID, age, current medications, conditions
  2. Calls lab_results → Gets latest eGFR, uACR, creatinine, potassium with dates
  3. Calls phase3_treatment_decision → Evaluates eligibility against KDIGO criteria
  4. Calls assess_medication_safety → Checks for drug interactions, contraindications
  5. Synthesizes response → All recommendations cite actual values from database

Clinical Safety Guarantee:

  • Every lab value in the AI response exists in the database
  • Every medication mentioned is in the patient's record
  • Every recommendation is validated against real clinical data
  • No invented patient history or fabricated test results

Early Diagnosis of CKD: The Screening Workflow

RENALGUARD AI implements a systematic approach to early CKD detection:

Step 1: Risk Identification in Non-CKD Patients (60+ years)

For patients 60+ without diagnosed CKD, the system automatically performs GCUA Assessment:

  1. Nelson/CKD-PC Renal Risk: Identifies patients at risk of developing CKD

    • Age, sex, eGFR, uACR, diabetes, hypertension, CVD, heart failure
    • Protective factors: SGLT2 inhibitors (-35%), RAS inhibitors (-20%)
    • High risk (≥15%): Immediate intervention recommended
  2. AHA PREVENT CVD Risk: Predicts cardiovascular events

    • Integrates kidney function (eGFR, uACR) as core variables
    • Considers CKM syndrome (Cardiovascular-Kidney-Metabolic)
    • High risk (≥20%): Aggressive risk factor modification
  3. Bansal Mortality Risk: Assesses competing mortality risk

    • Critical for treatment intensity decisions in elderly
    • High risk (≥50%): Quality of life focus over aggressive intervention

Step 2: Phenotype-Based Recommendations

Based on GCUA phenotype, the system recommends:

Phenotype Home Monitoring Treatment Priority
I (Accelerated Ager) Recommended SGLT2i + RAS inhibitor + Statin
II (Silent Renal) Recommended SGLT2i + RAS inhibitor (nephroprotection)
III (Vascular Dominant) If high renal risk Statin + BP control
IV (Senescent) If renal ≥15% or CVD ≥20% Quality of life focus, deprescribing
Moderate If high CVD risk Preventive strategies
Low Not required Routine care

Step 3: CKD Diagnosis and Classification

When lab results indicate CKD (eGFR < 60 OR uACR >= 30 for 3+ months):

  1. Automatic KDIGO Classification:

    • GFR Category: G1-G5 based on eGFR thresholds
    • Albuminuria Category: A1-A3 based on uACR levels
    • Combined Risk Level: Low, Moderate, High, Very High
  2. CKD Stage Assignment:

    • Stage 1: Normal/High GFR with kidney damage
    • Stage 2: Mildly decreased (eGFR 60-89)
    • Stage 3a: Mild-moderate decrease (eGFR 45-59)
    • Stage 3b: Moderate-severe decrease (eGFR 30-44)
    • Stage 4: Severely decreased (eGFR 15-29)
    • Stage 5: Kidney failure (eGFR < 15)
  3. Transition Detection:

    • System automatically identifies when patients move from non-CKD to CKD
    • Preserves GCUA phenotype and risk data for comprehensive analysis
    • AI generates transition-focused analysis explaining clinical significance

Monitoring Process: Dual-Track Surveillance

RENALGUARD AI uses two complementary monitoring approaches:

Minuteful Kidney: Home-Based Monitoring

What It Is: FDA-cleared smartphone-based home urine ACR test

How It Works:

  1. Patient performs urine test at home using Minuteful Kidney device
  2. Results are uploaded to the system automatically
  3. AI analyzes trends and detects concerning changes
  4. Alerts generated if uACR increases > 30%

Risk-Based Monitoring Recommendations: Home monitoring is recommended based on actual risk levels, not just phenotype:

Patient Profile Monitoring Recommendation
Phenotype I/II (High renal risk ≥15%) Recommended - essential for early detection
Phenotype IV with renal ≥15% or CVD ≥20% Recommended - low-burden, valuable for trends
Moderate with CVD ≥20% Recommended - cardiorenal syndrome risk
Low risk patients Not required - standard clinic monitoring

Monitoring Frequencies:

  • Weekly: For high-risk or newly treated patients
  • Biweekly: For moderate-risk patients
  • Monthly: For stable patients on treatment
  • Quarterly: For low-risk monitored patients

Benefits:

  • No lab visits required
  • More frequent monitoring catches changes earlier
  • Patient engagement in their own care
  • Real-time trend detection
  • Low-burden even for elderly/senescent patients

Blood Tests: Laboratory Monitoring

10 Key Biomarkers Tracked:

Biomarker Clinical Significance Alert Threshold
eGFR Kidney filtration capacity >= 1.5 ml/min change OR > 2% variation
uACR Protein leakage (kidney damage) > 10% change
Serum Creatinine Kidney function marker > 10% change
BUN Nitrogen waste levels > 15% change
Blood Pressure Cardiovascular risk > 10 mmHg change OR abnormal (< 90 or > 160)
HbA1c Glycemic control >= 0.3% change or > 8% (poor control)
Glucose Blood sugar > 20% change or out of range
Hemoglobin Anemia detection < 10 g/dL or > 5% change
Heart Rate Cardiovascular status > 15% change
Oxygen Saturation Respiratory function < 95%

Smart Alert System:

  • Only clinically significant changes generate alerts
  • Evidence-based thresholds prevent alert fatigue
  • Priority levels: Critical, High, Moderate
  • Recommended interventions included with each alert

Treatment Monitoring: Adherence and Outcomes

Medication Adherence Tracking

Medication Possession Ratio (MPR) calculation:

MPR = (Total Days Supply) / (Days in Observation Period) x 100%

Adherence Categories:

Category MPR Range Action
Good > 80% Continue current approach
Suboptimal 50-80% Medication counseling, simplify regimen
Poor < 50% Investigate barriers, consider alternatives

Tracked Medications:

  • SGLT2 Inhibitors: empagliflozin (Jardiance), dapagliflozin (Farxiga)
  • RAS Inhibitors: ACE inhibitors (lisinopril, enalapril), ARBs (losartan, valsartan)
  • Mineralocorticoid Receptor Antagonists (MRAs): spironolactone, finerenone

Jardiance Prescription Management

Complete tracking of SGLT2 inhibitor therapy:

  • Prescription dates and dosages (10mg or 25mg)
  • Prescriber information (name, NPI)
  • Treatment indication (diabetes, CKD, heart failure)
  • Currently taking status
  • Discontinuation dates and reasons

Assessment of Treatment Response

For Treated Patients: Improvement Detection

The system tracks response to therapy:

Metric Improvement Indicator Clinical Implication
eGFR Increase >= 1.5 ml/min Treatment is stabilizing kidney function
uACR Decrease > 10% Albuminuria improving, kidney protection working
Health State Move to better KDIGO stage Disease progression halted
Blood Pressure Achieving < 130/80 mmHg Cardiovascular risk reduced
HbA1c Decrease toward target Glycemic control improving

Positive Response Actions:

  • Continue current regimen
  • Consider dose optimization
  • Extend monitoring intervals
  • Document treatment success

For Treated Patients: Worsening Detection

Metric Worsening Indicator Recommended Action
eGFR Decline > 10% from baseline Evaluate for acute causes, consider nephrology referral
uACR Increase > 25% Intensify therapy, check adherence
Health State Deterioration to worse stage Urgent review, add therapies
Blood Pressure Persistent > 140/90 mmHg Add antihypertensive agents

Worsening Response Actions:

  • Check medication adherence
  • Review for drug interactions
  • Consider therapy intensification
  • Schedule urgent follow-up
  • Refer to nephrology if G4-G5 or rapid decline

Assessment for Non-Treated Patients

Improvement in Non-Treated Patients

Possible causes for spontaneous improvement:

  • Resolution of acute kidney injury
  • Lifestyle modifications (diet, exercise, hydration)
  • Improved control of underlying conditions (diabetes, hypertension)
  • Discontinuation of nephrotoxic medications

Actions for Improving Non-Treated Patients:

  • Document positive trends
  • Encourage continued lifestyle modifications
  • Consider preventive therapy if still at risk
  • Continue monitoring to confirm sustained improvement

Worsening in Non-Treated Patients

This is a critical indicator requiring immediate attention:

Scenario Priority Recommended Action
eGFR decline > 10% HIGH Initiate RAS inhibitor, consider SGLT2i
New or worsening proteinuria HIGH Start ACE/ARB therapy
Transition to CKD diagnosis CRITICAL Full KDIGO staging, treatment plan
Rapid progression (> 5 ml/min/year) CRITICAL Urgent nephrology referral

Worsening Non-Treated Patient Actions:

  • Immediate treatment initiation per KDIGO guidelines
  • RAS inhibitor for albuminuria (uACR >= 30)
  • SGLT2 inhibitor for CKD Stage 2-4 (eGFR > 20)
  • Nephrology referral for Stage 4-5
  • Monthly monitoring until stable

Clinical Decision Support: Next Steps for Each Patient

AI-Powered Recommendations

For every patient, the system provides actionable next steps:

For High-Risk Non-CKD Patients

Patient: 65-year-old with diabetes, hypertension, SCORED = 5

AI Recommendation:
1. ORDER: eGFR and uACR laboratory tests (URGENT)
2. REASON: High SCORED indicates 20%+ chance of undetected CKD
3. IF CKD confirmed: Initiate RAS inhibitor + SGLT2 inhibitor
4. FOLLOW-UP: 2-4 weeks for lab results review
5. MONITOR: Consider Minuteful Kidney home monitoring

For Newly Diagnosed CKD

Patient: Stage 3a CKD, eGFR 52, uACR 85 mg/g, not on treatment

AI Recommendation:
1. INITIATE: ACE inhibitor or ARB (first-line for albuminuria)
2. ADD: SGLT2 inhibitor (cardio-renal protection)
3. TARGET: Blood pressure < 130/80 mmHg
4. MONITOR: eGFR/uACR every 3 months initially
5. CONSIDER: Minuteful Kidney for frequent home monitoring
6. REFER: Nephrology if eGFR < 30 or rapid decline

For Treated Patients with Worsening

Patient: Stage 3b CKD, on lisinopril, eGFR declined 55→48 in 3 months

AI Recommendation:
1. CHECK: Medication adherence (current MPR: 72% - suboptimal)
2. VERIFY: No nephrotoxic medications (NSAIDs, contrast)
3. ADD: SGLT2 inhibitor if not already on one
4. CONSIDER: Dose optimization of current RAS inhibitor
5. SCHEDULE: Follow-up in 4 weeks
6. REFER: Nephrology for evaluation of rapid progression

For Stable Treated Patients

Patient: Stage 2 CKD, on empagliflozin + losartan, eGFR stable at 68

AI Recommendation:
1. CONTINUE: Current regimen (good response)
2. MONITOR: eGFR/uACR every 6 months
3. MAINTAIN: Blood pressure at target
4. REINFORCE: Lifestyle modifications
5. NEXT REVIEW: 6 months

Treatment Eligibility Assessment

The system automatically evaluates treatment options:

Jardiance (Empagliflozin) Eligibility:

  • STRONG Indication: CKD Stage 2-4 (eGFR > 20), diabetes, heart failure
  • MODERATE Indication: CKD without diabetes, eGFR > 20
  • CONTRAINDICATED: eGFR < 20, recurrent genital infections
  • MONITORING: Potassium levels, volume status

RAS Inhibitor Eligibility:

  • STRONG Indication: Albuminuria (uACR >= 30), diabetes, hypertension
  • CONTRAINDICATED: Pregnancy, bilateral renal artery stenosis
  • MONITORING: Potassium, creatinine (watch for > 30% rise)

Enabling Early Treatment: The Impact

How RENALGUARD AI Enables Early Intervention

  1. Automated Screening: Every patient assessed for CKD risk automatically
  2. Proactive Alerts: System identifies at-risk patients before symptoms
  3. Evidence-Based Guidance: KDIGO 2024 recommendations at your fingertips
  4. Treatment Gap Detection: Flags eligible patients not on recommended therapy
  5. Trend Monitoring: Catches progression early through continuous surveillance

Clinical Benefits

Benefit Mechanism
Earlier CKD Detection SCORED screening identifies hidden disease
Faster Treatment Initiation AI recommendations ready immediately
Better Adherence MPR tracking identifies intervention opportunities
Reduced Progression Proactive monitoring catches worsening early
Fewer Missed Patients Automated alerts ensure no patient falls through cracks

Economic Benefits

Outcome Cost Impact
Delay dialysis by 1 year Save $90,000+ per patient
Prevent hospitalization Save $15,000-50,000 per admission
Reduce nephrology referrals Save $300-500 per unnecessary referral
Outpatient CKD management 90% lower cost than inpatient care

Quality of Life Benefits

  • Preserved kidney function: Patients maintain independence longer
  • Fewer symptoms: Early treatment prevents uremia, anemia, bone disease
  • Better cardiovascular health: RAS and SGLT2 inhibitors protect heart
  • Delayed dialysis: Patients avoid life-altering treatment for years
  • Empowered patients: Home monitoring engages patients in their care

Core Features

AI Doctor Assistant - Your Intelligent Clinical Partner

The AI Doctor Assistant is embedded directly in each patient's detail card, providing instant access to evidence-based recommendations.

Key Capabilities:

  • Patient-Context-Aware Conversations: Automatically knows the patient's complete medical history, lab trends, current medications, GCUA phenotype, and risk classification
  • GCUA Phenotype Understanding: Explains cardiorenal risk phenotypes including Senescent classification and treatment implications
  • Treatment Guidance: Answers questions like "Should I start an SGLT2 inhibitor?" or "Should I monitor this patient at home?"
  • Clinical Guideline Integration: Provides KDIGO 2024 recommendations tailored to each patient's specific situation
  • Automatic Retry Logic: Handles API overload gracefully with exponential backoff (2s, 4s, 8s delays)
  • Plain-Text Optimized Responses: Formats responses for optimal readability without markdown syntax

Response Formatting: The AI uses a clean, readable format optimized for the chat interface:

  • SECTION TITLES IN UPPERCASE
  • Numbered lists (1. 2. 3.) for recommendations
  • Arrow symbols (→) for sub-points and actions
  • Line breaks for visual separation

Sample Interactions:

Doctor: "Should I start treating this patient?"

AI: PATIENT SUMMARY:
    Roger Campbell - 68-year-old with Type 2 diabetes and hypertension.

    CURRENT STATUS:
    1. CKD Stage: 3a (Moderate)
    2. eGFR: 52.3 ml/min/1.73m²
    3. uACR: 45 mg/g (A2 - Moderately increased albuminuria)
    4. Treatment Status: NOT ON TREATMENT

    RECOMMENDATIONS:
    1. INITIATE RAS Inhibitor (ACE-I or ARB)
       → Rationale: uACR >30 mg/g + diabetes/hypertension

    2. CONSIDER SGLT2 Inhibitor
       → Rationale: eGFR >20, proven cardio-renal protection

    3. INITIATE Home Monitoring
       → Recommend: Minuteful Kidney every 3 months

    FOLLOW-UP:
    Schedule review in 3 months to monitor for acute eGFR decline.

Advanced Patient Management System

Comprehensive Patient Dashboard:

  • 1000 Mock Patients: Realistic CKD population with diverse clinical scenarios
  • Real-Time KDIGO Classification: Automatic calculation based on eGFR and uACR
  • CKD Stage Tracking: Monitors patients from Stage 1 (mild) to Stage 5 (kidney failure)
  • Smart Filtering: Filter by CKD status, severity, treatment status, monitoring status, and recent updates

Patient Detail View Includes:

  • Demographics and medical history
  • Latest lab results with trend visualization
  • KDIGO risk classification breakdown
  • GCUA phenotype and cardiorenal risk assessment (for 60+ patients)
  • Current medications and treatment status
  • Home monitoring device status and recommendations
  • AI-generated health state evolution timeline
  • Embedded Doctor Assistant chat
  • Recommended actions and clinical summaries

Intelligent Lab Monitoring & Analysis

Real-Time Continuous Monitoring:

  • Monitors 10 key biomarkers: eGFR, uACR, serum creatinine, BUN, blood pressure, HbA1c, glucose, hemoglobin, heart rate, oxygen saturation
  • Background Processing: Automatically analyzes every patient update without manual intervention
  • Clinical Significance Detection: Only alerts on changes that matter clinically

Proactive Monitoring & Smart Notifications

Real-Time Patient Surveillance:

  • Continuous background monitoring of all patients
  • Automatic analysis triggered by patient data updates
  • No manual intervention required from doctors

Priority-Based Alert System:

  • CRITICAL: Rapid eGFR decline, severe lab abnormalities, acute kidney injury
  • HIGH: CKD progression, treatment gaps in high-risk patients, significant lab changes
  • MODERATE: Routine monitoring reminders, follow-up scheduling

Smart Alert Suppression:

  • No alerts for stable patients without significant changes
  • Prevents alert fatigue
  • Uses evidence-based clinical thresholds

Doctor Management & Assignment

7-Category Patient Segmentation:

Category Description
Non-CKD Low Risk GCUA Low phenotype, minimal intervention needed
Non-CKD Moderate Risk GCUA Moderate phenotype, preventive strategies
Non-CKD High Risk GCUA Phenotype I/II/III, active intervention required
CKD Mild Stage 1-2, early CKD management
CKD Moderate Stage 3a-3b, active nephroprotection
CKD Severe Stage 4, pre-dialysis care
Kidney Failure Stage 5, dialysis/transplant planning

Doctor Assignment Features:

  • Bulk assignment of doctors to patient categories
  • Primary and secondary doctor relationships
  • External notification email lists for care coordination
  • Per-doctor SMTP configuration for notifications
  • Quiet hours enforcement for non-urgent alerts

Analytics & Performance Tracking

Doctor Performance Metrics:

  • Alert acknowledgment rate and response times
  • Resolution rate and escalation tracking
  • Percentile-based response time distribution (P50, P75, P95)

Population Analytics:

  • Alert trends over configurable time periods (1-365 days)
  • Most common alert types and frequencies
  • Risk distribution across patient population
  • Treatment pattern analysis

Alert Lifecycle Tracking:

  • Creation → Viewed → Acknowledged → Resolved
  • Time-to-acknowledge and time-to-resolve metrics
  • Escalation rate monitoring for SLA compliance

Email & Notification System

Configurable Email Templates:

  • Per-doctor customizable notification templates
  • Variable substitution: {patient_name}, {mrn}, {value}, {unit}, {time_period}
  • HTML and plain-text formats
  • Test email functionality with preview URLs

Notification Types:

  • CKD transition alerts (non-CKD → CKD)
  • Significant lab value changes
  • Treatment adherence concerns
  • Clinical alerts requiring action

SMTP Configuration:

  • Per-doctor SMTP settings (host, port, credentials)
  • Fallback to system default for unconfigured doctors
  • Ethereal test accounts for development

Silent Hunter Feature

Identifying Data Gaps:

  • Detects patients eligible for GCUA but missing uACR data
  • uACR is critical for accurate renal risk calculation
  • Prompts for uACR testing to unlock full risk profile

Clinical Value:

  • Many patients have eGFR but no albuminuria testing
  • uACR can reveal "silent" kidney damage before eGFR decline
  • Completing GCUA enables phenotype classification and treatment recommendations

Technical Architecture

Frontend Stack

  • React 19.0.0 - Latest UI framework with concurrent features
  • Vite 6.0.7 - Next-generation frontend tooling
  • TypeScript 5.9.3 - Strict type safety
  • Tailwind CSS 3.4.17 - Utility-first CSS framework

Backend Stack

  • Node.js 20 LTS - Long-term support runtime
  • Express 5.1.0 - Fast, minimalist web framework
  • TypeScript 5.9.3 - End-to-end type safety
  • PostgreSQL 16 - Robust relational database

AI & Clinical Intelligence

  • Claude Sonnet 4.5 - State-of-the-art language model by Anthropic
  • Model Context Protocol (MCP) - Standardized clinical decision support tool integration
  • KDIGO 2024 Guidelines - Latest evidence-based CKD management protocols

Database Schema (31 Migrations)

Core Patient Data:

  • patients: Demographics, insurance, contact info, vitals
  • patient_risk_factors: Clinical risk metrics, GCUA phenotype cache
  • observations: Lab values with temporal tracking and triggers
  • conditions: Active conditions with clinical status

CKD Classification:

  • ckd_patient_data: KDIGO stage, severity, health state, treatment flags
  • non_ckd_patient_data: Pre-CKD risk stratification, monitoring status
  • patient_gcua_assessments: 3-module scores, phenotype, treatment recommendations

Medication Tracking:

  • jardiance_prescriptions: Dosage (10mg/25mg), prescriber, start/end dates
  • jardiance_refills: Refill history with gap analysis (expected vs actual)
  • jardiance_adherence: MPR/PDC metrics by period
  • adherence_barriers: Identified barriers with severity and resolution

Doctor Management:

  • doctors: Profiles with specialty, contact, SMTP settings
  • doctor_patient_assignments: Primary/secondary relationships
  • doctor_notifications: Notification queue with priority levels

Analytics & Communication:

  • alert_analytics: Alert lifecycle (create/view/acknowledge/resolve)
  • patient_health_state_comments: Clinical notes with visibility control
  • email_templates: Customizable per-doctor notification templates

Database Views:

  • gcua_population_statistics: Phenotype distribution analytics
  • gcua_high_risk_patients: Phenotype I and II patients
  • gcua_missing_uacr_patients: Silent Hunter candidates

Database Functions:

  • get_latest_gcua_assessment(): Retrieves most recent assessment
  • Auto-update triggers for cascading risk factor updates

Project Structure

/home/user/hack_BI/
├── backend/                           # Express + TypeScript API
│   ├── src/
│   │   ├── api/routes/
│   │   │   ├── patients.ts            # Patient management & filtering
│   │   │   ├── agent.ts               # AI Doctor Assistant chat
│   │   │   ├── gcua.ts                # GCUA risk assessment
│   │   │   ├── jardiance.ts           # Prescription, refill, adherence
│   │   │   ├── risk.ts                # Risk calculation & statistics
│   │   │   ├── doctors.ts             # Doctor profiles & assignments
│   │   │   ├── notifications.ts       # Alert notifications
│   │   │   ├── analytics.ts           # Performance metrics
│   │   │   ├── settings.ts            # Email & system configuration
│   │   │   └── init.ts                # Data seeding
│   │   ├── services/
│   │   │   ├── doctorAgent.ts         # Claude AI integration
│   │   │   ├── aiUpdateAnalysisService.ts  # AI lab analysis
│   │   │   ├── clinicalAlertsService.ts    # Alert generation
│   │   │   ├── patientMonitor.ts      # Real-time monitoring
│   │   │   ├── emailService.ts        # SMTP & notifications
│   │   │   ├── analyticsService.ts    # Alert lifecycle tracking
│   │   │   ├── healthStateCommentService.ts # Clinical notes
│   │   │   └── mcpClient.ts           # MCP tool integration
│   │   └── utils/
│   │       ├── kdigo.ts               # KDIGO 2024 classification
│   │       └── gcua.ts                # Nelson, AHA PREVENT, Bansal
│
├── frontend/                          # React + Vite + Tailwind
│   ├── src/
│   │   ├── App.tsx                    # Main application
│   │   ├── components/
│   │   │   ├── DoctorChatBar.tsx      # AI chat interface
│   │   │   ├── GCUARiskCard.tsx       # GCUA phenotype display
│   │   │   ├── GCUADashboard.tsx      # Population GCUA analytics
│   │   │   ├── PatientFilters.tsx     # Advanced filtering UI
│   │   │   ├── PatientTrendGraphs.tsx # eGFR/uACR visualization
│   │   │   ├── AdherenceCard.tsx      # MPR/PDC metrics display
│   │   │   ├── DoctorAssignmentInterface.tsx  # Bulk assignment UI
│   │   │   ├── Settings.tsx           # Email configuration
│   │   │   ├── EmailTemplateEditor.tsx # Template management
│   │   │   └── LandingPage.tsx        # System overview
│
├── mcp-server/                        # Clinical Decision Support
│   └── src/tools/
│       ├── comprehensiveCKDAnalysis.ts    # Master orchestrator
│       ├── phase1PreDiagnosisRisk.ts      # Pre-CKD screening
│       ├── phase2KDIGOClassification.ts   # KDIGO staging
│       ├── phase3TreatmentDecision.ts     # Treatment eligibility
│       ├── phase4AdherenceMonitoring.ts   # Adherence tracking
│       ├── gcuaAssessment.ts              # GCUA 3-module assessment
│       ├── predictKidneyFailureRisk.ts    # KFRE prediction
│       ├── assessMedicationSafety.ts      # Drug safety checking
│       ├── calculateEGFR.ts               # eGFR calculation
│       ├── compositeAdherenceMonitoring.ts # Multi-drug adherence
│       ├── checkScreeningProtocol.ts      # Protocol compliance
│       ├── labResults.ts                  # Lab data queries
│       ├── patientData.ts                 # Patient data aggregation
│       ├── populationStats.ts             # Cohort analytics
│       └── guidelines.ts                  # Clinical guidelines
│
├── infrastructure/
│   └── postgres/
│       ├── migrations/                # 31 ordered migrations
│       │   ├── 001-009                # Core patient data
│       │   ├── 014-020                # Communication & tracking
│       │   ├── 021-029                # Doctor management
│       │   └── 030-031                # GCUA assessment
│       └── RENDER_DATABASE_INIT.sql   # Full schema initialization
│
├── data/                              # Mock data & seed files
├── docs/                              # 40+ documentation files
├── docker-compose.yml                 # Production deployment
├── docker-compose.dev.yml             # Development setup
└── Dockerfile                         # Multi-stage container build

Quick Start Guide

Prerequisites

1. Clone Repository

git clone <repository-url>
cd hack_BI

2. Set Environment Variables

Create a .env file in the project root:

ANTHROPIC_API_KEY=sk-ant-api03-xxxxxxxxxxxxxxxxxxxxx
DATABASE_URL=postgresql://healthcare_user:healthcare_pass@postgres:5432/healthcare_ai_db
NODE_ENV=production
PORT=3000

3. Start All Services

docker-compose up -d
docker-compose logs -f backend
curl http://localhost:3000/health

4. Access the Application

5. Populate with Mock Data

curl -X POST http://localhost:3000/api/init/populate

API Documentation

Patient Management Endpoints

Endpoint Method Description
/api/patients GET List all patients with KDIGO classification
/api/patients/filter GET Filter by CKD status, severity, treatment, monitoring
/api/patients/:id GET Full patient detail with risk assessment
/api/patients/:id/update-records POST Simulate new lab results
/api/patients/:id/comments GET Health state evolution timeline
/api/patients/:id/assign-doctor POST Assign doctor (primary/secondary)
/api/patients/:id/doctors GET Get assigned doctors
/api/patients/:id/primary-doctor GET Get primary doctor

Risk Assessment Endpoints

Endpoint Method Description
/api/risk/assessment/:patientId GET Get risk evaluation
/api/risk/calculate/:patientId POST Recalculate risk
/api/risk/bulk-calculate POST Bulk risk calculation
/api/risk/patients/high-risk GET High-risk population
/api/risk/statistics GET Population statistics

GCUA Assessment Endpoints

Endpoint Method Description
/api/gcua/assessment/:patientId GET Get latest GCUA assessment
/api/gcua/calculate/:patientId POST Calculate new GCUA assessment
/api/gcua/bulk-calculate POST Recalculate all eligible patients
/api/gcua/eligible-patients GET List patients eligible for GCUA (60+, eGFR >60)
/api/gcua/high-risk GET Get Phenotype I and II patients
/api/gcua/missing-uacr GET Silent Hunter - patients needing uACR
/api/gcua/statistics GET Population statistics by phenotype
/api/gcua/history/:patientId GET Assessment history for patient

Jardiance & Adherence Endpoints

Endpoint Method Description
/api/jardiance/prescriptions/:patientId GET Get prescriptions
/api/jardiance/prescriptions POST Create prescription (10mg/25mg)
/api/jardiance/prescriptions/:id/discontinue PUT Stop treatment
/api/jardiance/refills/:prescriptionId GET Get refill history
/api/jardiance/refills POST Record refill with gap analysis
/api/jardiance/adherence/:prescriptionId GET Get adherence history
/api/jardiance/adherence/calculate POST Calculate MPR/PDC
/api/jardiance/barriers/:prescriptionId GET Get adherence barriers
/api/jardiance/barriers POST Record new barrier
/api/jardiance/barriers/:id/resolve PUT Resolve barrier
/api/jardiance/summary/:patientId GET Complete prescription summary

Doctor Management Endpoints

Endpoint Method Description
/api/doctors GET List all doctors
/api/doctors POST Create doctor profile
/api/doctors/:email GET Get doctor details
/api/doctors/:email PUT Update doctor profile
/api/doctors/:email DELETE Delete doctor
/api/doctors/assign-by-category POST Bulk assign by category
/api/doctors/category-assignments GET Get category assignments
/api/doctors/category-stats GET Patient counts by category
/api/doctors/external-notifications GET/POST External email management

Notification Endpoints

Endpoint Method Description
/api/notifications GET Get notifications (paginated)
/api/notifications/unread GET Get unread notifications
/api/notifications/:id/read POST Mark as read
/api/notifications/:id/acknowledge POST Acknowledge notification
/api/notifications/stats GET Notification statistics
/api/notifications/monitor/status GET Monitoring service status

Analytics Endpoints

Endpoint Method Description
/api/analytics/summary GET System-wide summary
/api/analytics/doctor/:email GET Doctor performance metrics
/api/analytics/doctors/all GET All doctors performance
/api/analytics/trends GET Alert trends over time
/api/analytics/common-alerts GET Most common alert types
/api/analytics/patient/:id GET Patient alert history
/api/analytics/response-times GET Response time distribution
/api/analytics/track/viewed/:id POST Track alert view
/api/analytics/track/acknowledged/:id POST Track acknowledgment
/api/analytics/track/resolved/:id POST Track resolution

Settings & Email Endpoints

Endpoint Method Description
/api/settings/email GET Get email configuration
/api/settings/email POST Update email settings
/api/settings/email/test POST Send test email
/api/settings/email/messages GET Email message history
/api/email-templates CRUD Template management

AI Assistant Endpoints

Endpoint Method Description
/api/agent/chat POST Doctor assistant chat
/api/agent/analyze-patient/:id POST Patient analysis
/api/agent/quick-question POST General questions
/api/agent/health GET Service health

System Initialization

Endpoint Method Description
/api/init/seed-data POST Generate test patients
/api/init/load-mock-patients POST Load from seed files
/api/init/clear-all POST Clear all data (dev only)

Security & Compliance

Data Security

  • Non-root Docker containers
  • Environment variable injection for API keys
  • CORS configuration
  • PostgreSQL authentication
  • Network isolation

Clinical Safety

  • Threshold-based alerts using evidence-based clinical thresholds
  • Treatment status verification before AI recommendations
  • KDIGO 2024 compliance
  • Audit trail for all updates

HIPAA Considerations

Current Status: Demonstration system with mock data.

For Production Deployment:

  • End-to-end encryption (TLS/SSL)
  • User authentication and authorization
  • Audit logging of patient data access
  • Data retention policies
  • Business Associate Agreements
  • HIPAA security risk assessment

The Vision

RENALGUARD AI aims to democratize access to nephrology expertise by bringing advanced CKD management tools to every primary care practice. By combining artificial intelligence with evidence-based clinical guidelines, we empower doctors to:

  1. Detect CKD earlier through automated risk screening
  2. Initiate treatment sooner with AI-powered recommendations
  3. Monitor more effectively with dual-track home and lab surveillance
  4. Optimize outcomes through adherence tracking and trend analysis

The result: Patients live longer with better quality of life, and healthcare systems save billions in dialysis and hospitalization costs.


Why RENALGUARD AI?

For Doctors

  • Reduce time on manual risk calculations by 80%
  • Identify high-risk patients earlier
  • Access evidence-based recommendations instantly
  • Minimize alert fatigue with smart detection

For Patients

  • Earlier CKD detection and intervention
  • Personalized treatment plans
  • Better monitoring of kidney function
  • Reduced risk of progression to kidney failure

For Healthcare Systems

  • Standardize CKD care across practices
  • Reduce unnecessary nephrology referrals
  • Lower costs through earlier intervention
  • Improve population health outcomes

RENALGUARD AI - Guarding Kidney Health with Artificial Intelligence

Built with Claude AI, React, TypeScript, and PostgreSQL

Version 2.0.0 | Last Updated: November 2025


Changelog

Version 2.0.0 (November 2025)

  • GCUA Integration: Replaced SCORED/Framingham with GCUA (Geriatric Cardiorenal Unified Assessment) for patients 60+
    • Nelson/CKD-PC (5-year renal risk)
    • AHA PREVENT 2024 (10-year CVD risk)
    • Bansal Geriatric Mortality (5-year competing risk)
  • Phenotype Classification: Six actionable phenotypes (I-IV, Moderate, Low) with treatment recommendations
  • Risk-Based Home Monitoring: Monitoring recommendations now based on actual risk levels, not just phenotype
  • AI Doctor Assistant: Enhanced with GCUA phenotype awareness and plain-text optimized responses
  • Improved Filtering: Non-CKD patient filter now correctly excludes patients who developed CKD

About

AI-powered clinical decision support system designed for primary care physicians to manage CKD patients. It combines real-time patient monitoring, evidence-based risk assessment, and AI-driven treatment recommendations to help doctors identify kidney disease early, track progression accurately, and optimize treatment strategies.

https://ckd-analyzer-frontend.onrender.com

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •