@@ -133,6 +133,7 @@ def set_split_explicit(self, train_selection, test_selection, dataset_name=None,
133133 def set_time_ordering (self , feature_name , ascending = True ):
134134 """
135135 Uses a variable to sort the data for train/test split and hyperparameter optimization by time
136+
136137 :param str feature_name: Name of the variable to use
137138 :param bool ascending: True iff the test set is expected to have larger time values than the train set
138139 """
@@ -221,13 +222,15 @@ def foreach_feature(self, fn, only_of_type = None):
221222 def reject_feature (self , feature_name ):
222223 """
223224 Marks a feature as rejected and not used for training
225+
224226 :param str feature_name: Name of the feature to reject
225227 """
226228 self .get_feature_preprocessing (feature_name )["role" ] = "REJECT"
227229
228230 def use_feature (self , feature_name ):
229231 """
230232 Marks a feature as input for training
233+
231234 :param str feature_name: Name of the feature to reject
232235 """
233236 self .get_feature_preprocessing (feature_name )["role" ] = "INPUT"
@@ -398,6 +401,7 @@ def strategy(self, strategy):
398401 def set_grid_search (self , shuffle = True , seed = 0 ):
399402 """
400403 Sets the search strategy to "GRID" to perform a grid-search on the hyperparameters.
404+
401405 :param shuffle: if True, iterate over a shuffled grid as opposed to the lexicographical
402406 iteration over the cartesian product of the hyperparameters.
403407 :type shuffle: bool
@@ -416,6 +420,7 @@ def set_grid_search(self, shuffle=True, seed=0):
416420 def set_random_search (self , seed = 0 ):
417421 """
418422 Sets the search strategy to "RANDOM" to perform a random search on the hyperparameters.
423+
419424 :param seed: defaults to 0
420425 :type seed: int
421426 """
@@ -425,6 +430,7 @@ def set_random_search(self, seed=0):
425430 def set_bayesian_search (self , seed = 0 ):
426431 """
427432 Sets the search strategy to "BAYESIAN" to perform a Bayesian search on the hyperparameters.
433+
428434 :param seed: defaults to 0
429435 :type seed: int
430436 """
@@ -452,6 +458,7 @@ def set_kfold_validation(self, n_folds=5, stratified=True):
452458 """
453459 Sets the validation mode to k-fold cross-validation (either "KFOLD" or "TIME_SERIES_KFOLD" if time-based ordering
454460 is enabled).
461+
455462 :param n_folds: the number of folds used for the hyperparameter search, defaults to 5
456463 :type n_folds: int
457464 :param stratified: if True, keep the same proportion of each target classes in all folds, defaults to True
@@ -478,6 +485,7 @@ def set_single_split_validation(self, split_ratio=0.8, stratified=True):
478485 """
479486 Sets the validation mode to single split (either "SHUFFLE" or "TIME_SERIES_SINGLE_SPLIT" if time-based ordering
480487 is enabled).
488+
481489 :param split_ratio: ratio of the data used for the train during hyperparameter search, defaults to 0.8
482490 :type split_ratio: float
483491 :param stratified: if True, keep the same proportion of each target classes in both splits, defaults to True
@@ -503,6 +511,7 @@ def set_single_split_validation(self, split_ratio=0.8, stratified=True):
503511 def set_custom_validation (self , code = None ):
504512 """
505513 Sets the validation mode to "CUSTOM".
514+
506515 :param code: definition of the validation
507516 :type code: str
508517 """
@@ -517,6 +526,7 @@ def set_custom_validation(self, code=None):
517526 def set_search_distribution (self , distributed = False , n_containers = 4 ):
518527 """
519528 Sets the distribution parameters for the hyperparameter search execution.
529+
520530 :param distributed: if True, distribute search in the Kubernetes cluster selected
521531 in the runtime environment's containerized execution configuration, defaults to False
522532 :type distributed: bool
@@ -618,6 +628,7 @@ def definition_mode(self):
618628 "EXPLICIT" means that the hyperparameter search is performed over a given set of values (default for grid search)
619629 "RANGE" means that the hyperparameter search is performed over a range of values (default for random and Bayesian
620630 searches)
631+
621632 :return: str mode: "EXPLICIT" | "RANGE"
622633 """
623634 if self ._algo_settings .strategy == "GRID" :
@@ -644,6 +655,7 @@ def set_explicit_values(self, values):
644655 Sets both:
645656 - the explicit values to search over for the current numerical hyperparameter
646657 - the definition mode of the current numerical hyperparameter to "EXPLICIT"
658+
647659 :param values: the explicit list of numerical values considered for this hyperparameter in the search
648660 :type values: list of float | int
649661 """
@@ -714,6 +726,7 @@ def set_range(self, min=None, max=None, nb_values=None):
714726 Sets both:
715727 - the Range parameters to search over for the current numerical hyperparameter
716728 - the definition mode of the current numerical hyperparameter to "RANGE"
729+
717730 :param min: the lower bound of the Range for this hyperparameter
718731 :type min: float | int
719732 :param max: the upper bound of the Range for this hyperparameter
@@ -800,6 +813,7 @@ def _pretty_repr(self):
800813 def set_values (self , values ):
801814 """
802815 Enables the search over listed values (categories).
816+
803817 :param values: values to enable, all other values will be disabled
804818 :type values: list of str
805819 """
@@ -2429,6 +2443,7 @@ def get_modeling_settings(self):
24292443 def get_actual_modeling_params (self ):
24302444 """
24312445 Gets the actual / resolved parameters that were used to train this model.
2446+
24322447 :return: A dictionary, which contains at least a "resolved" key
24332448 :rtype: dict
24342449 """
@@ -2754,6 +2769,7 @@ def remove_all_splits(self):
27542769 def guess (self , prediction_type = None , reguess_level = None ):
27552770 """
27562771 Guess the feature handling and the algorithms.
2772+
27572773 :param string prediction_type: In case of a prediction problem the prediction type can be specify. Valid values are BINARY_CLASSIFICATION, REGRESSION, MULTICLASS.
27582774 :param bool reguess_level: One of the following values: TARGET_CHANGE, TARGET_REGUESS and FULL_REGUESS. Only valid for prediction ML Tasks, cannot be specified if prediction_type is also set.
27592775 """
0 commit comments