Skip to content
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 15 additions & 9 deletions tools/server/server.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -73,17 +73,23 @@ int main(int argc, char ** argv, char ** envp) {
return 1;
}

// validate batch size for embeddings
// embeddings require all tokens to be processed in a single ubatch
// see https://github.com/ggml-org/llama.cpp/issues/12836
if (params.embedding && params.n_batch > params.n_ubatch) {
LOG_WRN("%s: embeddings enabled with n_batch (%d) > n_ubatch (%d)\n", __func__, params.n_batch, params.n_ubatch);
LOG_WRN("%s: setting n_batch = n_ubatch = %d to avoid assertion failure\n", __func__, params.n_ubatch);
params.n_batch = params.n_ubatch;
// validate batch size for embeddings and reranking
// non-causal attention (embeddings/reranking) requires n_batch == n_ubatch
// see https://github.com/ggml-org/llama.cpp/issues/6263
if (params.embedding && params.n_batch != params.n_ubatch) {
LOG_WRN("%s: embeddings/reranking mode requires n_batch == n_ubatch\n", __func__);
LOG_WRN("%s: setting both to min(%d, %d) = %d to avoid configuration issues\n",
__func__, params.n_batch, params.n_ubatch,
std::min(params.n_batch, params.n_ubatch));
params.n_batch = params.n_ubatch = std::min(params.n_batch, params.n_ubatch);
}

if (params.n_parallel < 0) {
LOG_INF("%s: n_parallel is set to auto, using n_parallel = 4 and kv_unified = true\n", __func__);
// TODO: should we have a separate n_parallel parameter for the server?
// https://github.com/ggml-org/llama.cpp/pull/16736#discussion_r2483763177
// TODO: this is a common configuration that is suitable for most local use cases
// however, overriding the parameters is a bit confusing - figure out something more intuitive
if (params.n_parallel == 1 && params.kv_unified == false && !params.has_speculative()) {
LOG_WRN("%s: setting n_parallel = 4 and kv_unified = true (add -kvu to disable this)\n", __func__);

params.n_parallel = 4;
params.kv_unified = true;
Expand Down
Loading