@@ -2852,6 +2852,33 @@ def sum(self, axis=0, *, numeric_only: bool = False):
28522852 def mean (self , axis = 0 , * , numeric_only : bool = False ):
28532853 """Return the mean of the values over the requested axis.
28542854
2855+ **Examples:**
2856+
2857+ >>> import bigframes.pandas as bpd
2858+ >>> bpd.options.display.progress_bar = None
2859+
2860+ >>> df = bpd.DataFrame({"A": [1, 3], "B": [2, 4]})
2861+ >>> df
2862+ A B
2863+ 0 1 2
2864+ 1 3 4
2865+ <BLANKLINE>
2866+ [2 rows x 2 columns]
2867+
2868+ Calculating the mean of each column (the default behavior without an explicit axis parameter).
2869+
2870+ >>> df.mean()
2871+ A 2.0
2872+ B 3.0
2873+ dtype: Float64
2874+
2875+ Calculating the mean of each row.
2876+
2877+ >>> df.mean(axis=1)
2878+ 0 1.5
2879+ 1 3.5
2880+ dtype: Float64
2881+
28552882 Args:
28562883 axis ({index (0), columns (1)}):
28572884 Axis for the function to be applied on.
@@ -2865,7 +2892,27 @@ def mean(self, axis=0, *, numeric_only: bool = False):
28652892 raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
28662893
28672894 def median (self , * , numeric_only : bool = False , exact : bool = False ):
2868- """Return the median of the values over the requested axis.
2895+ """Return the median of the values over colunms.
2896+
2897+ **Examples:**
2898+
2899+ >>> import bigframes.pandas as bpd
2900+ >>> bpd.options.display.progress_bar = None
2901+
2902+ >>> df = bpd.DataFrame({"A": [1, 3], "B": [2, 4]})
2903+ >>> df
2904+ A B
2905+ 0 1 2
2906+ 1 3 4
2907+ <BLANKLINE>
2908+ [2 rows x 2 columns]
2909+
2910+ Finding the median value of each column.
2911+
2912+ >>> df.median()
2913+ A 1.0
2914+ B 2.0
2915+ dtype: Float64
28692916
28702917 Args:
28712918 numeric_only (bool. default False):
@@ -2884,6 +2931,34 @@ def var(self, axis=0, *, numeric_only: bool = False):
28842931
28852932 Normalized by N-1 by default.
28862933
2934+ **Examples:**
2935+
2936+ >>> import bigframes.pandas as bpd
2937+ >>> bpd.options.display.progress_bar = None
2938+
2939+ >>> df = bpd.DataFrame({"A": [1, 3], "B": [2, 4]})
2940+ >>> df
2941+ A B
2942+ 0 1 2
2943+ 1 3 4
2944+ <BLANKLINE>
2945+ [2 rows x 2 columns]
2946+
2947+ Calculating the variance of each column (the default behavior without an explicit axis parameter).
2948+
2949+ >>> df.var()
2950+ A 2.0
2951+ B 2.0
2952+ dtype: Float64
2953+
2954+ Calculating the variance of each row.
2955+
2956+ >>> df.var(axis=1)
2957+ 0 0.5
2958+ 1 0.5
2959+ dtype: Float64
2960+
2961+
28872962 Args:
28882963 axis ({index (0), columns (1)}):
28892964 Axis for the function to be applied on.
@@ -2897,10 +2972,36 @@ def var(self, axis=0, *, numeric_only: bool = False):
28972972 raise NotImplementedError (constants .ABSTRACT_METHOD_ERROR_MESSAGE )
28982973
28992974 def skew (self , * , numeric_only : bool = False ):
2900- """Return unbiased skew over requested axis .
2975+ """Return unbiased skew over columns .
29012976
29022977 Normalized by N-1.
29032978
2979+ **Examples:**
2980+
2981+ >>> import bigframes.pandas as bpd
2982+ >>> bpd.options.display.progress_bar = None
2983+
2984+ >>> df = bpd.DataFrame({'A': [1, 2, 3, 4, 5],
2985+ ... 'B': [5, 4, 3, 2, 1],
2986+ ... 'C': [2, 2, 3, 2, 2]})
2987+ >>> df
2988+ A B C
2989+ 0 1 5 2
2990+ 1 2 4 2
2991+ 2 3 3 3
2992+ 3 4 2 2
2993+ 4 5 1 2
2994+ <BLANKLINE>
2995+ [5 rows x 3 columns]
2996+
2997+ Calculating the skewness of each column.
2998+
2999+ >>> df.skew()
3000+ A 0.0
3001+ B 0.0
3002+ C 2.236068
3003+ dtype: Float64
3004+
29043005 Args:
29053006 numeric_only (bool, default False):
29063007 Include only float, int, boolean columns.
0 commit comments