Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 40 additions & 3 deletions src/1-line-plot.ipynb

Large diffs are not rendered by default.

41 changes: 37 additions & 4 deletions src/2-bar-plot.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -9,18 +9,51 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGzCAYAAABzfl4TAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJwNJREFUeJzt3XtYlHX+//HXiDoiwqgIKklq6iWCpuWxWE+lkQtWm/lV0w3xsH0LM628yr7XalaKbdlhPaWmYBpmHkrXVvKQ5n6/2aqpaZmaW6hZiiYCHkKBz++PLubnBCijHxjR5+O6uGpu7rnnzT0DPrnnnsFhjDECAACwoJKvBwAAANcPwgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgLXrcGDB6tRo0a+HsPD6dOnNWzYMNWrV08Oh0OjRo3y9UjXPIfDoRdeeMHXY5QJXz1GX3jhBTkcjnK/XdwYCAuUWkpKihwOh8dHaGiounfvrtWrV5fbHN26dfOYoXbt2mrfvr3mzZungoICK7cxadIkffTRR1a29fvtpqSk6LHHHtOCBQv05z//+ZLr5+fnKzk5Wd26dVPt2rXldDrVqFEjJSQkaNu2bV7f/p49e/TCCy8oPT39Cr8ClKeMjAxVrlxZgwYNKnGdnJwc+fv768EHHyzHyYCSVfb1AKh4XnzxRTVu3FjGGB07dkwpKSn64x//qH/84x+Ki4srlxkaNGigpKQkSdLx48f17rvvaujQodq/f78mT5581dufNGmSHnroIT3wwANXva2Lffrpp+rUqZPGjx9/2XXPnTunBx98UGlpaerSpYuef/551a5dW+np6frggw80f/58HTp0SA0aNCj17e/Zs0cTJkxQt27drrmjOSU5d+6cKle+MX9UhYaGqmfPnlqxYoXOnj2r6tWrF1ln+fLl+vXXXy8ZH0B5ujG/W3FVevXqpXbt2rkvDx06VHXr1tWiRYushEVBQYHOnz+vatWqlbiOy+Xy+EH66KOPqnnz5po2bZpeeuklValS5arnKAsZGRmKjIws1bpjxoxRWlqa3njjjSJPmYwfP15vvPFGGUx4bbj4MXCpx8GNYODAgUpLS9PKlSvVv3//Ip9PTU2Vy+VSbGysD6YDiuKpEFy1mjVryt/fv8hvla+99pruvPNOBQcHy9/fX23bttXSpUuLXN/hcGjEiBF67733FBUVJafTqbS0NK9mqF69ujp16qQzZ87o+PHjJa535swZPf300woPD5fT6VTz5s312muv6eI/8utwOHTmzBnNnz/f/XTL4MGDL3n7GRkZ7sCqVq2aWrdurfnz57s/v3HjRjkcDv3www/6+OOP3dst6SmJH3/8UbNmzVLPnj2LPQ/Dz89PzzzzjPtoxcGDB/X444+refPm8vf3V3BwsPr27eux/ZSUFPXt21eS1L17d/cMGzdudK+zevVqde7cWQEBAQoMDFRsbKy++eabIre/ZMkSRUZGqlq1amrZsqU+/PDDYs8XKM3+li79GCjuHIsjR45oyJAhqlu3rpxOp6KiojRv3rwic06dOlVRUVGqXr26atWqpXbt2ik1NbXYfV7o/PnzGjdunNq2bSuXy6WAgAB17txZGzZs8FgvPT1dDodDr732mmbPnq0mTZrI6XSqffv22rp1a5HtfvTRR2rZsqXHPiuNP/3pTwoICCh27oyMDK1fv14PPfSQnE6n/vWvf6lv3766+eab5XQ6FR4ertGjR+vcuXOXvI3CryUlJaXI58p7/6Pi44gFvJaVlaUTJ07IGKOMjAxNnTpVp0+fLnIo9q233tJ9992ngQMH6vz583r//ffVt29frVq1qshvV59++qk++OADjRgxQnXq1Lmiw/Tff/+9/Pz8VLNmzWI/b4zRfffdpw0bNmjo0KFq06aNPvnkE40ZM0ZHjhxxHwFYsGCBhg0bpg4dOugvf/mLJKlJkyYl3u65c+fUrVs3HThwQCNGjFDjxo21ZMkSDR48WKdOndKTTz6pFi1aaMGCBRo9erQaNGigp59+WpIUEhJS7DZXr16tvLy8y56DUWjr1q36/PPP1b9/fzVo0EDp6emaOXOmunXrpj179qh69erq0qWLRo4cqb///e96/vnn1aJFC0ly/3fBggWKj49XTEyMXnnlFZ09e1YzZ87UH/7wB+3YscN9n3z88cfq16+fWrVqpaSkJGVmZmro0KG66aabrmh/FyrtY+DYsWPq1KmTO0ZCQkK0evVqDR06VNnZ2e4QmzNnjkaOHKmHHnpITz75pH799Vft2rVL//73v/Xwww+XuC+zs7P1zjvvaMCAARo+fLhycnI0d+5cxcTEaMuWLWrTpo3H+qmpqcrJydGjjz4qh8Ohv/3tb3rwwQf1/fffu4+crVmzRn369FFkZKSSkpL0yy+/KCEhoVRPYwUEBOj+++/X0qVLdfLkSdWuXdv9ucWLFys/P18DBw6U9FvwnT17Vo899piCg4O1ZcsWTZ06VT/++KOWLFly2dsqjbLe/7gOGKCUkpOTjaQiH06n06SkpBRZ/+zZsx6Xz58/b1q2bGnuuusuj+WSTKVKlcw333xTqjm6du1qIiIizPHjx83x48fNt99+a0aOHGkkmd69e7vXi4+PNw0bNnRf/uijj4wk8/LLL3ts76GHHjIOh8McOHDAvSwgIMDEx8eXap4333zTSDILFy70+FrvuOMOU6NGDZOdne1e3rBhQxMbG3vZbY4ePdpIMjt27CjVDL/f18YYs3nzZiPJvPvuu+5lS5YsMZLMhg0bPNbNyckxNWvWNMOHD/dYfvToUeNyuTyWt2rVyjRo0MDk5OS4l23cuNFIuuL9fanHgCQzfvx49+WhQ4ea+vXrmxMnTnis179/f+Nyudz74v777zdRUVFFtnc5eXl5Jjc312NZZmamqVu3rhkyZIh72Q8//GAkmeDgYHPy5En38hUrVhhJ5h//+Id7WZs2bUz9+vXNqVOn3MvWrFlTZJ+V5OOPPzaSzKxZszyWd+rUydx0000mPz/fGFP84yApKck4HA5z8OBB97Lx48ebi3/8F34tycnJRa5f3vsfFR9PhcBr06dP19q1a7V27VotXLhQ3bt317Bhw7R8+XKP9fz9/d3/n5mZqaysLHXu3Fnbt28vss2uXbuW+twDSdq7d69CQkIUEhKiFi1aaOrUqYqNjS32cGyhf/7zn/Lz89PIkSM9lj/99NMyxlzxK1v++c9/ql69ehowYIB7WZUqVTRy5EidPn1an332mdfbzM7OliQFBgaWav2L9/WFCxf0yy+/qGnTpqpZs2ax+/v31q5dq1OnTmnAgAE6ceKE+8PPz08dO3Z0Pw3w008/affu3XrkkUdUo0YN9/W7du2qVq1aeWzT2/1dmseAMUbLli1T7969ZYzxmDUmJkZZWVnur7dmzZr68ccfi31a4lL8/PxUtWpVSb+d63Hy5Enl5eWpXbt2xe7Lfv36qVatWu7LnTt3lvTbETRJ+vnnn7Vz507Fx8fL5XK51+vZs2epH/P33HOPQkJCPJ5G+OGHH/TFF19owIABqlTptx/lFz8Ozpw5oxMnTujOO++UMUY7duwo7S4oUXnsf1R8PBUCr3Xo0MHj5M0BAwbotttu04gRIxQXF+f+obxq1Sq9/PLL2rlzp3Jzc93rF/f6+caNG3s1Q6NGjTRnzhw5HA5Vq1ZNzZo1U2ho6CWvc/DgQYWFhRX5x7rwqYCDBw96NcPF223WrJn7h7uN7QYFBUn67aWEpXHu3DklJSUpOTlZR44c8TiHISsr67LX/+677yRJd9111yXnKfxamjZtWmSdpk2bevzD6+3+Ls1j4Pjx4zp16pRmz56t2bNnF7tORkaGJOnZZ5/VunXr1KFDBzVt2lT33HOPHn74YUVHR1/2dubPn68pU6Zo7969unDhwiVnvPnmmz0uF0ZGZmampP//dTZr1qzIdZs3b16q8KtcubL69eunGTNm6MiRI7rpppvckVH4NIgkHTp0SOPGjdPKlSvdt1+oNI+Dyymv/Y+KjbDAVatUqZK6d++ut956S999952ioqL0r3/9S/fdd5+6dOmiGTNmqH79+qpSpYqSk5OLPXnr4t+0SiMgIEA9evSw9SVccyIiIiRJu3fvLvKcfnGeeOIJJScna9SoUbrjjjvkcrnkcDjUv3//Ur23R+E6CxYsUL169Yp8vjxe7lmax0DhnIMGDVJ8fHyx69x6662SfguYffv2adWqVUpLS9OyZcs0Y8YMjRs3ThMmTCjxNhYuXKjBgwfrgQce0JgxYxQaGio/Pz8lJSXpP//5T5H1/fz8it2O+d0Jqldr0KBBmjZtmhYtWqRnnnlGixYtUmRkpPvxkZ+fr549e+rkyZN69tlnFRERoYCAAB05ckSDBw++5OOgpDfLys/P97hcHvsfFR9hASvy8vIk/fbOkpK0bNkyVatWTZ988omcTqd7veTkZJ/MJ0kNGzbUunXrlJOT4/Fb9N69e92fL+TNuxI2bNhQu3btUkFBgcdRi+K2W1q9evWSn5+fFi5cWKoTOJcuXar4+HhNmTLFvezXX3/VqVOnPNYr6esqPDk1NDT0ksFW+LUcOHCgyOd+v8yb/V1aISEhCgwMVH5+fqnCMiAgQP369VO/fv10/vx5Pfjgg5o4caLGjh1b4stYly5dqltuuUXLly/32F+lee+R4hR+nYVHhS62b9++Um+nY8eOatKkiVJTU9WzZ0998803mjhxovvzu3fv1v79+zV//nw98sgj7uVr16697LYLj7L8/vHy+6NK5bH/UfFxjgWu2oULF7RmzRpVrVrVfZjbz89PDofD4zee9PT0Mnk3y9L64x//qPz8fE2bNs1j+RtvvCGHw6FevXq5lwUEBBT5IXup7R49elSLFy92L8vLy9PUqVNVo0YNde3a1etZw8PDNXz4cK1Zs0ZTp04t8vmCggJNmTJFP/74o6Tf9vfvf0OeOnVqkd84AwICJBX9ByQmJkZBQUGaNGmSx6H/QoUv4Q0LC1PLli317rvvuiNSkj777DPt3r3b4zre7O/S8vPzU58+fbRs2TJ9/fXXJc4pSb/88ovH56pWrarIyEgZY4r9Gi++DcnziMO///1vbd682et5Jal+/fpq06aN5s+f7/F0xNq1a7Vnzx6vtjVw4EDt2LFD48ePl8Ph8Hh1RXFzG2P01ltvXXa7QUFBqlOnjjZt2uSxfMaMGR6Xy2P/o+LjiAW8tnr1avdvnRkZGUpNTdV3332n5557zv1cfGxsrF5//XXde++9evjhh5WRkaHp06eradOm2rVrl0/m7t27t7p3767/+Z//UXp6ulq3bq01a9ZoxYoVGjVqlMdLStu2bat169bp9ddfV1hYmBo3bqyOHTsWu92//OUvmjVrlgYPHqwvv/xSjRo10tKlS/V///d/evPNN0t9AubvTZkyRf/5z380cuRILV++XHFxcapVq5YOHTqkJUuWaO/eve43TIqLi9OCBQvkcrkUGRmpzZs3a926dQoODvbYZps2beTn56dXXnlFWVlZcjqduuuuuxQaGqqZM2fqz3/+s26//Xb1799fISEhOnTokD7++GNFR0e7A2HSpEm6//77FR0drYSEBGVmZmratGlq2bKlR2x4s7+9MXnyZG3YsEEdO3bU8OHDFRkZqZMnT2r79u1at26dTp48Kem3Ex7r1aun6Oho1a1bV99++62mTZum2NjYS94ncXFxWr58uf70pz8pNjZWP/zwg95++21FRkZ6fH3eSEpKUmxsrP7whz9oyJAhOnnypPs9HrzZ5qBBg/Tiiy9qxYoVio6O9nhJbkREhJo0aaJnnnlGR44cUVBQkJYtW1bkXIuSDBs2TJMnT9awYcPUrl07bdq0Sfv37y+yXlnvf1wHfPBKFFRQxb3ctFq1aqZNmzZm5syZpqCgwGP9uXPnmmbNmhmn02kiIiJMcnJykZe5GfPby9kSExNLPUfXrl1L9TK237/c1JjfXlY5evRoExYWZqpUqWKaNWtmXn311SKz792713Tp0sX4+/sbSZd96emxY8dMQkKCqVOnjqlatapp1apVsS/dK+3LTQvl5eWZd955x3Tu3Nm4XC5TpUoV07BhQ5OQkODxUtTMzEz37deoUcPExMSYvXv3moYNGxaZfc6cOeaWW24xfn5+RV56umHDBhMTE2NcLpepVq2aadKkiRk8eLDZtm2bxzbef/99ExERYZxOp2nZsqVZuXKl6dOnj4mIiPBYr7T7+1KPAf3u5Y7G/La/ExMTTXh4uKlSpYqpV6+eufvuu83s2bPd68yaNct06dLFBAcHG6fTaZo0aWLGjBljsrKyLrnPCwoKzKRJk0zDhg2N0+k0t912m1m1alWRx1PhSzRfffXVUs28bNky06JFC+N0Ok1kZKRZvnx5sY/Ry2nfvr2RZGbMmFHkc3v27DE9evQwNWrUMHXq1DHDhw83X331VZGXkhb3fXj27FkzdOhQ43K5TGBgoPmv//ovk5GRUe77HxWfwxjLZxgBuCG1adNGISEhpXpOH8D1i3MsAHjlwoUL7pN1C23cuFFfffWVunXr5puhAFwzOGIBwCvp6enq0aOHBg0apLCwMO3du1dvv/22XC6Xvv766yLndQC4sXDyJgCv1KpVS23bttU777yj48ePKyAgQLGxsZo8eTJRAYAjFgAAwB7OsQAAANYQFgAAwJpyP8eioKBAP/30kwIDA71622QAAOA7xhjl5OQoLCysyB9dvFi5h8VPP/2k8PDw8r5ZAABgweHDh9WgQYMSP1/uYVH4Vq6HDx92v/0zAAC4tmVnZys8PPyyb8le7mFR+PRHUFAQYQEAQAVzudMYOHkTAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsKbc/2w6AOAGkHrpP62NMvSw8enNc8QCAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGCNV2GRn5+vv/71r2rcuLH8/f3VpEkTvfTSSzLGlNV8AACgAqnszcqvvPKKZs6cqfnz5ysqKkrbtm1TQkKCXC6XRo4cWVYzAgCACsKrsPj88891//33KzY2VpLUqFEjLVq0SFu2bCnxOrm5ucrNzXVfzs7OvsJRAQDAtc6rp0LuvPNOrV+/Xvv375ckffXVV/rf//1f9erVq8TrJCUlyeVyuT/Cw8OvbmIAAHDN8uqIxXPPPafs7GxFRETIz89P+fn5mjhxogYOHFjidcaOHaunnnrKfTk7O5u4AADgOuVVWHzwwQd67733lJqaqqioKO3cuVOjRo1SWFiY4uPji72O0+mU0+m0MiwAALi2eRUWY8aM0XPPPaf+/ftLklq1aqWDBw8qKSmpxLAAAAA3Dq/OsTh79qwqVfK8ip+fnwoKCqwOBQAAKiavjlj07t1bEydO1M0336yoqCjt2LFDr7/+uoYMGVJW8wEAgArEq7CYOnWq/vrXv+rxxx9XRkaGwsLC9Oijj2rcuHFlNR8AAKhAHKac3zYzOztbLpdLWVlZCgoKKs+bBgCUl1SHrye4cT1cNv+sl/bfb/5WCAAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWVfT0AUBqOCQ5fj3DDMuONr0cAUIFwxAIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGu8DosjR45o0KBBCg4Olr+/v1q1aqVt27aVxWwAAKCCqezNypmZmYqOjlb37t21evVqhYSE6LvvvlOtWrXKaj4AAFCBeBUWr7zyisLDw5WcnOxe1rhxY+tDAQCAismrp0JWrlypdu3aqW/fvgoNDdVtt92mOXPmXPI6ubm5ys7O9vgAAADXJ6/C4vvvv9fMmTPVrFkzffLJJ3rsscc0cuRIzZ8/v8TrJCUlyeVyuT/Cw8OvemgAAHBtchhjTGlXrlq1qtq1a6fPP//cvWzkyJHaunWrNm/eXOx1cnNzlZub676cnZ2t8PBwZWVlKSgo6CpGx43EMcHh6xFuWGZ8qX9EAP9fKt+zPvNw2XzPZmdny+VyXfbfb6+OWNSvX1+RkZEey1q0aKFDhw6VeB2n06mgoCCPDwAAcH3yKiyio6O1b98+j2X79+9Xw4YNrQ4FAAAqJq/CYvTo0friiy80adIkHThwQKmpqZo9e7YSExPLaj4AAFCBeBUW7du314cffqhFixapZcuWeumll/Tmm29q4MCBZTUfAACoQLx6HwtJiouLU1xcXFnMAgAAKjj+VggAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1lX09gFUOh68nuHEZ4+sJAADXAI5YAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgzVWFxeTJk+VwODRq1ChL4wAAgIrsisNi69atmjVrlm699Vab8wAAgArsisLi9OnTGjhwoObMmaNatWrZngkAAFRQVxQWiYmJio2NVY8ePS67bm5urrKzsz0+AADA9amyt1d4//33tX37dm3durVU6yclJWnChAleDwYAACoer45YHD58WE8++aTee+89VatWrVTXGTt2rLKystwfhw8fvqJBAQDAtc+rIxZffvmlMjIydPvtt7uX5efna9OmTZo2bZpyc3Pl5+fncR2n0ymn02lnWgAAcE3zKizuvvtu7d6922NZQkKCIiIi9OyzzxaJCgAAcGPxKiwCAwPVsmVLj2UBAQEKDg4ushwAANx4eOdNAABgjdevCvm9jRs3WhgDAABcDzhiAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYE1lXw8A4MblcPh6ghuXMb6eANcrjlgAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGCNV2GRlJSk9u3bKzAwUKGhoXrggQe0b9++spoNAABUMF6FxWeffabExER98cUXWrt2rS5cuKB77rlHZ86cKav5AABABVLZm5XT0tI8LqekpCg0NFRffvmlunTpYnUwAABQ8XgVFr+XlZUlSapdu3aJ6+Tm5io3N9d9OTs7+2puEgAAXMOu+OTNgoICjRo1StHR0WrZsmWJ6yUlJcnlcrk/wsPDr/QmAQDANe6KwyIxMVFff/213n///UuuN3bsWGVlZbk/Dh8+fKU3CQAArnFX9FTIiBEjtGrVKm3atEkNGjS45LpOp1NOp/OKhgMAABWLV2FhjNETTzyhDz/8UBs3blTjxo3Lai4AAFABeRUWiYmJSk1N1YoVKxQYGKijR49Kklwul/z9/ctkQAAAUHF4dY7FzJkzlZWVpW7duql+/fruj8WLF5fVfAAAoALx+qkQAACAkvC3QgAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1lxRWEyfPl2NGjVStWrV1LFjR23ZssX2XAAAoALyOiwWL16sp556SuPHj9f27dvVunVrxcTEKCMjoyzmAwAAFYjXYfH6669r+PDhSkhIUGRkpN5++21Vr15d8+bNK4v5AABABVLZm5XPnz+vL7/8UmPHjnUvq1Spknr06KHNmzcXe53c3Fzl5ua6L2dlZUmSsrOzr2ReXKvK+v78tWw3j5LxvXp9KvO79WwZbx8lK6M7t/BngTHmkut5FRYnTpxQfn6+6tat67G8bt262rt3b7HXSUpK0oQJE4osDw8P9+amca1zuXw9AcqIazL37fWIb9nr2PCyvXNzcnLkusQDyKuwuBJjx47VU0895b5cUFCgkydPKjg4WA6Ho6xvvsLIzs5WeHi4Dh8+rKCgIF+PA0u4X69f3LfXL+7b4hljlJOTo7CwsEuu51VY1KlTR35+fjp27JjH8mPHjqlevXrFXsfpdMrpdHosq1mzpjc3e0MJCgrigXwd4n69fnHfXr+4b4u61JGKQl6dvFm1alW1bdtW69evdy8rKCjQ+vXrdccdd3g/IQAAuK54/VTIU089pfj4eLVr104dOnTQm2++qTNnzighIaEs5gMAABWI12HRr18/HT9+XOPGjdPRo0fVpk0bpaWlFTmhE95xOp0aP358kaeNULFxv16/uG+vX9y3V8dhLve6EQAAgFLib4UAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawuAZs3rxZfn5+io2N9fUosGTw4MFyOBzuj+DgYN17773atWuXr0eDBUePHtUTTzyhW265RU6nU+Hh4erdu7fHmweiYrn4e7ZKlSqqW7euevbsqXnz5qmgoMDX41UohMU1YO7cuXriiSe0adMm/fTTT74eB5bce++9+vnnn/Xzzz9r/fr1qly5suLi4nw9Fq5Senq62rZtq08//VSvvvqqdu/erbS0NHXv3l2JiYm+Hg9XofB7Nj09XatXr1b37t315JNPKi4uTnl5eb4er8Io8z9Chks7ffq0Fi9erG3btuno0aNKSUnR888/7+uxYIHT6XT/DZ169erpueeeU+fOnXX8+HGFhIT4eDpcqccff1wOh0NbtmxRQECAe3lUVJSGDBniw8lwtS7+nr3pppt0++23q1OnTrr77ruVkpKiYcOG+XjCioEjFj72wQcfKCIiQs2bN9egQYM0b968y/6te1Q8p0+f1sKFC9W0aVMFBwf7ehxcoZMnTyotLU2JiYkeUVGIP7B4/bnrrrvUunVrLV++3NejVBiEhY/NnTtXgwYNkvTbYbisrCx99tlnPp4KNqxatUo1atRQjRo1FBgYqJUrV2rx4sWqVIlvu4rqwIEDMsYoIiLC16OgHEVERCg9Pd3XY1QY/ITzoX379mnLli0aMGCAJKly5crq16+f5s6d6+PJYEP37t21c+dO7dy5U1u2bFFMTIx69eqlgwcP+no0XCGOJt6YjDFyOBy+HqPC4BwLH5o7d67y8vIUFhbmXmaMkdPp1LRp00r1d+9x7QoICFDTpk3dl9955x25XC7NmTNHL7/8sg8nw5Vq1qyZHA6H9u7d6+tRUI6+/fZbNW7c2NdjVBgcsfCRvLw8vfvuu5oyZYr7t9qdO3fqq6++UlhYmBYtWuTrEWGZw+FQpUqVdO7cOV+PgitUu3ZtxcTEaPr06Tpz5kyRz586dar8h0KZ+vTTT7V792716dPH16NUGByx8JFVq1YpMzNTQ4cOLXJkok+fPpo7d67++7//20fTwYbc3FwdPXpUkpSZmalp06bp9OnT6t27t48nw9WYPn26oqOj1aFDB7344ou69dZblZeXp7Vr12rmzJn69ttvfT0irlDh92x+fr6OHTumtLQ0JSUlKS4uTo888oivx6swCAsfmTt3rnr06FHs0x19+vTR3/72N+3atUu33nqrD6aDDWlpaapfv74kKTAwUBEREVqyZIm6devm28FwVW655RZt375dEydO1NNPP62ff/5ZISEhatu2rWbOnOnr8XAVCr9nK1eurFq1aql169b6+9//rvj4eE669oLDcDYSAACwhAQDAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFjz/wCdq6+FISM1ZQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# TASK: Create a bar plot with the following data: categories = ['A', 'B', 'C', 'D'] and values = [5, 7, 3, 9].\n",
"# Use different colors for each bar and add a title to the plot."
"# Use different colors for each bar and add a title to the plot.\n",
"\n",
"import matplotlib.pyplot as plt\n",
"categories = ['A', 'B', 'C', 'D']\n",
"values = [5, 7, 3, 9]\n",
"colors = ['red', 'green', 'blue', 'orange']\n",
"plt.bar(categories, values, color=colors)\n",
"plt.title(\"Bar Plot of Categories and Values\")\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python"
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
Expand Down
43 changes: 39 additions & 4 deletions src/3-scatter-plot.ipynb

Large diffs are not rendered by default.

41 changes: 37 additions & 4 deletions src/4-pie-chart.ipynb

Large diffs are not rendered by default.

57 changes: 53 additions & 4 deletions src/5-subplot.ipynb

Large diffs are not rendered by default.

41 changes: 37 additions & 4 deletions src/6-histogram.ipynb

Large diffs are not rendered by default.