Skip to content
Open

Main #60

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions .vscode/settings.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
{
"githubPullRequests.ignoredPullRequestBranches": [
"main"
]
}
8 changes: 4 additions & 4 deletions activities/1.1-basic-jupyter-notebook.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -31,21 +31,21 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"id": "f2b4273a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Hello, JupyterLab!\n"
"Hello, Trisha!\n"
]
}
],
"source": [
"# This is a Python code cell\n",
"print('Hello, JupyterLab!')"
"print('Hello, Trisha!')"
]
},
{
Expand Down Expand Up @@ -159,7 +159,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
"version": "3.10.12"
}
},
"nbformat": 4,
Expand Down
53 changes: 52 additions & 1 deletion src/1-line-plot.ipynb

Large diffs are not rendered by default.

44 changes: 43 additions & 1 deletion src/2-bar-plot.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -16,11 +16,53 @@
"# TASK: Create a bar plot with the following data: categories = ['A', 'B', 'C', 'D'] and values = [5, 7, 3, 9].\n",
"# Use different colors for each bar and add a title to the plot."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGzCAYAAABzfl4TAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjMsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvZiW1igAAAAlwSFlzAAAPYQAAD2EBqD+naQAAI9RJREFUeJzt3XlYlPX+//HXADIQm4JbKF9FpXBLOygt5kKbmNLm0p6a5llA0srr6OmYmhqVHrWFY2Uolrll67G0TNtO2jE102O5lXisFDSNRRPU+fz+6GJ+ToAy+MEReT6ua67Lueeeud8z48jTe+4ZHMYYIwAAAAv8fD0AAAA4fxAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWwDlk0KBBat68+VnZVm5urvr166eoqCg5HA7NmDHjrGy3NsvJyZHD4VB2dravRwGqDWGB81p2drYcDofHqWHDhkpKStKyZcvO2hw9evTwmCEyMlKdO3fW7Nmz5XK5rGzj8ccf11tvvVXp9UeOHKn3339fY8aM0SuvvKLk5GQrc5zK0aNHNX36dF122WWKiIhQUFCQLrroIqWlpWn79u1e397q1as1fvx4/fLLL/aHBVAlAb4eADgbHnvsMcXGxsoYo9zcXGVnZ+uGG27Qv/71L/Xp0+eszNC0aVNlZGRIkvbv36+XX35ZQ4YM0fbt2/XEE0+c8e0//vjj6tevn26++eZKrb9q1SrddNNNevjhh89425Vx4MABJScna/369erTp4/uvPNOhYaGatu2bVq4cKFefPFFlZSUeHWbq1ev1oQJEzRo0CDVrVu3ega3qFmzZvr1119Vp04dX48CVBvCArVCr1691KlTJ/f5IUOGqFGjRlqwYIGVsHC5XCopKVFQUFCF60REROjuu+92n//jH/+oiy++WM8995wmTpx41n/Y5OXlWf1hfPToUQUGBsrPr/wdoYMGDdJXX32lJUuWqG/fvh6XTZw4UY888oi1Wc41x48fl8vlUmBg4Cn/jgDnA94KQa1Ut25dBQcHKyDAs62nTp2qK6+8UlFRUQoODlZCQoKWLFlS5voOh0NpaWl69dVX1bZtWzmdTi1fvtyrGS644AJdfvnlOnz4sPbv31/heocPH9ZDDz2kmJgYOZ1OXXzxxZo6dapO/sXEDodDhw8f1ty5c91vtwwaNKjc2yt9e8gYo8zMTPf6pb7//nv1799fkZGR7hnfffddj9v4+OOP5XA4tHDhQv39739XkyZNdMEFF6igoKDcbf7nP//Ru+++qyFDhpSJCklyOp2aOnWq+/ymTZs0aNAgtWjRQkFBQWrcuLHuu+8+/fzzz+51xo8fr1GjRkmSYmNj3fcjJyfHvc68efOUkJCg4OBgRUZG6vbbb9eePXvKbD8zM1MtWrRQcHCwEhMT9dlnn6lHjx7q0aOHx3p5eXnuKA0KClKHDh00d+5cj3VKj6OYOnWqZsyYoZYtW8rpdOqbb76p8BiLrVu3ql+/foqMjFRQUJA6deqkd955x2OdY8eOacKECYqLi1NQUJCioqJ01VVXacWKFeU+5oCvsMcCtUJ+fr4OHDggY4zy8vL07LPPqqioyGMPgiQ9/fTTuvHGG3XXXXeppKRECxcuVP/+/bV06VL17t3bY91Vq1Zp8eLFSktLU/369at00OX3338vf3//CvccGGN044036qOPPtKQIUPUsWNHvf/++xo1apR+/PFHTZ8+XZL0yiuvaOjQoUpMTNSwYcMkSS1btiz3Nrt166ZXXnlF99xzj6677jrde++97styc3N15ZVX6siRI0pPT1dUVJTmzp2rG2+8UUuWLNEtt9zicVsTJ05UYGCgHn74YRUXFyswMLDcbZb+kLznnnsq9bisWLFC33//vQYPHqzGjRtry5YtevHFF7VlyxZ98cUXcjgcuvXWW7V9+3YtWLBA06dPV/369SVJDRo0kCRNnjxZY8eO1YABAzR06FDt379fzz77rLp166avvvrK/ZjPnDlTaWlp6tq1q0aOHKmcnBzdfPPNqlevnpo2beqe6ddff1WPHj20c+dOpaWlKTY2Vq+99poGDRqkX375RQ888IDHfZgzZ46OHj2qYcOGyel0KjIystzjabZs2aIuXbqoSZMmGj16tEJCQrR48WLdfPPNev31192P+fjx45WRkeF+ngsKCrRu3Tpt2LBB1113XaUeV+CsMMB5bM6cOUZSmZPT6TTZ2dll1j9y5IjH+ZKSEtOuXTtz9dVXeyyXZPz8/MyWLVsqNUf37t1NfHy82b9/v9m/f7/59ttvTXp6upFkUlJS3OsNHDjQNGvWzH3+rbfeMpLMpEmTPG6vX79+xuFwmJ07d7qXhYSEmIEDB1ZqntL7kJqa6rFsxIgRRpL57LPP3MsKCwtNbGysad68uTlx4oQxxpiPPvrISDItWrQo85iV55ZbbjGSzKFDhyo1W3m3uWDBAiPJfPrpp+5lU6ZMMZLMrl27PNbNyckx/v7+ZvLkyR7LN2/ebAICAtzLi4uLTVRUlOncubM5duyYe73s7GwjyXTv3t29bMaMGUaSmTdvnntZSUmJueKKK0xoaKgpKCgwxhiza9cuI8mEh4ebvLw8j+2XXjZnzhz3smuuuca0b9/eHD161L3M5XKZK6+80sTFxbmXdejQwfTu3buihww4Z/BWCGqFzMxMrVixQitWrNC8efOUlJSkoUOH6o033vBYLzg42P3nQ4cOKT8/X127dtWGDRvK3Gb37t3Vpk2bSs+wdetWNWjQQA0aNFDr1q317LPPqnfv3po9e3aF13nvvffk7++v9PR0j+UPPfSQjDHWP9ny3nvvKTExUVdddZV7WWhoqIYNG6acnBx98803HusPHDjQ4zGrSOlbJGFhYZWa4+TbPHr0qA4cOKDLL79cksp9Ln7vjTfekMvl0oABA3TgwAH3qXHjxoqLi9NHH30kSVq3bp1+/vln3X///R5vi911112qV6+ex22+9957aty4se644w73sjp16ig9PV1FRUX65JNPPNbv27eve+9JRQ4ePKhVq1ZpwIABKiwsdM/5888/q2fPntqxY4d+/PFHSb+9fbdlyxbt2LHjtPcf8CXeCkGtkJiY6HHw5h133KFLL71UaWlp6tOnj3sX/tKlSzVp0iRt3LhRxcXF7vVPPgahVGxsrFczNG/eXLNmzZLD4VBQUJDi4uLUsGHDU15n9+7dio6OLvMDuXXr1u7Lbdq9e7cuu+yyMstP3l67du3cyyv7GISHh0uSCgsLK3XA6MGDBzVhwgQtXLhQeXl5Hpfl5+ef9vo7duyQMUZxcXHlXl56oGzp49eqVSuPywMCAsq8tbV7927FxcWVOTi1oueiMo/Nzp07ZYzR2LFjNXbs2HLXycvLU5MmTfTYY4/ppptu0kUXXaR27dopOTlZ99xzjy655JLTbgc4mwgL1Ep+fn5KSkrS008/rR07dqht27b67LPPdOONN6pbt2765z//qQsvvFB16tTRnDlzNH/+/DK3UZn/qZ8sJCRE1157ra27cE6o7GMQHx8vSdq8ebO6du162vUHDBig1atXa9SoUerYsaNCQ0PlcrmUnJxcqe/9cLlccjgcWrZsmfz9/ctcHhoaWqm5z0RlHpvS+/Lwww+rZ8+e5a5TGj3dunXTd999p7ffflsffPCBXnrpJU2fPl3PP/+8hg4dam9w4AwRFqi1jh8/LkkqKiqSJL3++usKCgrS+++/L6fT6V5vzpw5PplP+u17Dz788EMVFhZ67LXYunWr+/JS5e1Vqcr2tm3bVmZ5edvzRkpKijIyMjRv3rzThsWhQ4e0cuVKTZgwQY8++qh7eXlvAVR0n1u2bCljjGJjY3XRRRdVuK3S+7Nz504lJSW5lx8/flw5OTkeewOaNWumTZs2yeVyeey1OJPHpkWLFpJ+24NSmeiMjIzU4MGDNXjwYBUVFalbt24aP348YYFzCsdYoFY6duyYPvjgAwUGBrp3Zfv7+8vhcOjEiRPu9XJycrz6NkvbbrjhBp04cULPPfecx/Lp06fL4XCoV69e7mUhISFn/A2UN9xwg9auXas1a9a4lx0+fFgvvviimjdv7tUxJSe74oorlJycrJdeeqncx7OkpMT9RV2lexjMSR+nlVTuV46HhIRIUpn7feutt8rf318TJkwoczvGGPfHVjt16qSoqCjNmjXLHZqS9Oqrr+rQoUMe17vhhhu0b98+LVq0yL3s+PHjevbZZxUaGqru3buf4hEoX8OGDdWjRw+98MIL2rt3b5nLT/4Y8skftZV+2+vSqlUrj7fsgHMBeyxQKyxbtsz9P8u8vDzNnz9fO3bs0OjRo93v//fu3VvTpk1TcnKy7rzzTuXl5SkzM1OtWrXSpk2bfDJ3SkqKkpKS9MgjjygnJ0cdOnTQBx98oLffflsjRozw+EhpQkKCPvzwQ02bNk3R0dGKjY0t93iJUxk9erQWLFigXr16KT09XZGRkZo7d6527dql119/vcIvv6qMl19+Wddff71uvfVWpaSk6JprrlFISIh27NihhQsXau/evZo6darCw8PVrVs3PfXUUzp27JiaNGmiDz74QLt27SpzmwkJCZKkRx55RLfffrvq1KmjlJQUtWzZUpMmTdKYMWPcHx8NCwvTrl279Oabb2rYsGF6+OGHFRgYqPHjx2v48OG6+uqrNWDAAOXk5Cg7O1stW7b02CMybNgwvfDCCxo0aJDWr1+v5s2ba8mSJfr88881Y8aMSh+Y+nuZmZm66qqr1L59e91///1q0aKFcnNztWbNGv3www/6+uuvJUlt2rRRjx49lJCQoMjISK1bt05LlixRWlpalbYLVBsffiIFqHblfdw0KCjIdOzY0cycOdO4XC6P9bOyskxcXJxxOp0mPj7ezJkzx4wbN878/qWicj6qeSrdu3c3bdu2Pe16v/+4qTG/fdxz5MiRJjo62tSpU8fExcWZKVOmlJl969atplu3biY4ONhIOu1HTyu6D999953p16+fqVu3rgkKCjKJiYlm6dKlHuuUftz0tddeO+19OtmRI0fM1KlTTefOnU1oaKgJDAw0cXFxZvjw4R4fnf3hhx/MLbfcYurWrWsiIiJM//79zU8//WQkmXHjxnnc5sSJE02TJk2Mn59fmY+evv766+aqq64yISEhJiQkxMTHx5vU1FSzbds2j9t45plnTLNmzYzT6TSJiYnm888/NwkJCSY5OdljvdzcXDN48GBTv359ExgYaNq3b+/x0VFj/v9HSqdMmVLm/pf3cVNjfnvM7733XtO4cWNTp04d06RJE9OnTx+zZMkS9zqTJk0yiYmJpm7duiY4ONjEx8ebyZMnm5KSkko88sDZ4zDmd/sJAaCWc7lcatCggW699VbNmjXL1+MANQrHWACo1Y4ePVrmOIyXX35ZBw8eLPOV3gBOjz0WAGq1jz/+WCNHjlT//v0VFRWlDRs2KCsrS61bt9b69esr/JpyAOXj4E0AtVrz5s0VExOjZ555RgcPHlRkZKTuvfdePfHEE0QFUAXssQAAANZwjAUAALCGsAAAANac9WMsXC6XfvrpJ4WFhVn5CmIAAFD9jDEqLCxUdHT0Kb8s76yHxU8//aSYmJizvVkAAGDBnj171LRp0wovP+thUfq1t3v27HF/lTIAADi3FRQUKCYm5rRfX3/Ww6L07Y/w8HDCAgCAGuZ0hzFw8CYAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgzVn/tekAgNrg1L9aG9XJ+HTr7LEAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFjjVVicOHFCY8eOVWxsrIKDg9WyZUtNnDhRxpjqmg8AANQgAd6s/OSTT2rmzJmaO3eu2rZtq3Xr1mnw4MGKiIhQenp6dc0IAABqCK/CYvXq1brpppvUu3dvSVLz5s21YMECrV27tsLrFBcXq7i42H2+oKCgiqMCAIBznVdvhVx55ZVauXKltm/fLkn6+uuv9e9//1u9evWq8DoZGRmKiIhwn2JiYs5sYgAAcM5yGC8OkHC5XPrb3/6mp556Sv7+/jpx4oQmT56sMWPGVHid8vZYxMTEKD8/X+Hh4Wc2PQDgHOXw9QC1WPUc91hQUKCIiIjT/vz26q2QxYsX69VXX9X8+fPVtm1bbdy4USNGjFB0dLQGDhxY7nWcTqecTqd30wMAgBrJq7AYNWqURo8erdtvv12S1L59e+3evVsZGRkVhgUAAKg9vDrG4siRI/Lz87yKv7+/XC6X1aEAAEDN5NUei5SUFE2ePFn/93//p7Zt2+qrr77StGnTdN9991XXfAAAoAbx6uDNwsJCjR07Vm+++aby8vIUHR2tO+64Q48++qgCAwMrdRuVPfgDAFCTcfCm7/j24E2vwsIGwgIAagPCwnd8Gxb8rhAAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrAnw9AFAZDoevJ6i9jPH1BABqEvZYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgjddh8eOPP+ruu+9WVFSUgoOD1b59e61bt646ZgMAADVMgDcrHzp0SF26dFFSUpKWLVumBg0aaMeOHapXr151zQcAAGoQr8LiySefVExMjObMmeNeFhsba30oAABQM3n1Vsg777yjTp06qX///mrYsKEuvfRSzZo165TXKS4uVkFBgccJAACcn7wKi++//14zZ85UXFyc3n//ff35z39Wenq65s6dW+F1MjIyFBER4T7FxMSc8dAAAODc5DDGmMquHBgYqE6dOmn16tXuZenp6fryyy+1Zs2acq9TXFys4uJi9/mCggLFxMQoPz9f4eHhZzA6ahOHw9cT1F6V/xcCOBkvWt+pnhdtQUGBIiIiTvvz26s9FhdeeKHatGnjsax169b63//+V+F1nE6nwsPDPU4AAOD85FVYdOnSRdu2bfNYtn37djVr1szqUAAAoGbyKixGjhypL774Qo8//rh27typ+fPn68UXX1Rqamp1zQcAAGoQr8Kic+fOevPNN7VgwQK1a9dOEydO1IwZM3TXXXdV13wAAKAG8ergTRsqe/AHcDIO3vQdDt5E1fCi9Z0adPAmAADAqRAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsCbA1wNY5XD4eoLayxhfTwAAOAewxwIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGvOKCyeeOIJORwOjRgxwtI4AACgJqtyWHz55Zd64YUXdMkll9icBwAA1GBVCouioiLdddddmjVrlurVq2d7JgAAUENVKSxSU1PVu3dvXXvttaddt7i4WAUFBR4nAABwfgrw9goLFy7Uhg0b9OWXX1Zq/YyMDE2YMMHrwQAAQM3j1R6LPXv26IEHHtCrr76qoKCgSl1nzJgxys/Pd5/27NlTpUEBAMC5z2GMMZVd+a233tItt9wif39/97ITJ07I4XDIz89PxcXFHpeVp6CgQBEREcrPz1d4eHjVJy+Pw2H39lB5lf9rVCU8tb5TzU8tzlu8aH2nel60lf357dVbIddcc402b97ssWzw4MGKj4/XX//619NGBQAAOL95FRZhYWFq166dx7KQkBBFRUWVWQ4AAGofvnkTAABY4/WnQn7v448/tjAGAAA4H7DHAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwJoAXw8AoPZyTHD4eoRay4wzvh4B5yn2WAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrAAAADWEBYAAMAawgIAAFhDWAAAAGsICwAAYI1XYZGRkaHOnTsrLCxMDRs21M0336xt27ZV12wAAKCG8SosPvnkE6WmpuqLL77QihUrdOzYMV1//fU6fPhwdc0HAABqkABvVl6+fLnH+ezsbDVs2FDr169Xt27drA4GAABqHq/C4vfy8/MlSZGRkRWuU1xcrOLiYvf5goKCM9kkAAA4h1X54E2Xy6URI0aoS5cuateuXYXrZWRkKCIiwn2KiYmp6iYBAMA5rsphkZqaqv/+979auHDhKdcbM2aM8vPz3ac9e/ZUdZMAAOAcV6W3QtLS0rR06VJ9+umnatq06SnXdTqdcjqdVRoOAADULF6FhTFGw4cP15tvvqmPP/5YsbGx1TUXAACogbwKi9TUVM2fP19vv/22wsLCtG/fPklSRESEgoODq2VAAABQc3h1jMXMmTOVn5+vHj166MILL3SfFi1aVF3zAQCAGsTrt0IAAAAqwu8KAQAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYQ1gAAABrCAsAAGANYQEAAKwhLAAAgDWEBQAAsIawAAAA1hAWAADAGsICAABYU6WwyMzMVPPmzRUUFKTLLrtMa9eutT0XAACogbwOi0WLFunBBx/UuHHjtGHDBnXo0EE9e/ZUXl5edcwHAABqEK/DYtq0abr//vs1ePBgtWnTRs8//7wuuOACzZ49uzrmAwAANUiANyuXlJRo/fr1GjNmjHuZn5+frr32Wq1Zs6bc6xQXF6u4uNh9Pj8/X5JUUFBQlXlxruL5PG9V61N7tBpvG6fEv8Hns+p5bkv/zhhjTrmeV2Fx4MABnThxQo0aNfJY3qhRI23durXc62RkZGjChAlllsfExHizaZzrIiJ8PQGqCU/t+SniCZ7Y81f1PreFhYWKOMU/DF6FRVWMGTNGDz74oPu8y+XSwYMHFRUVJYfDUd2brzEKCgoUExOjPXv2KDw83NfjwBKe1/MXz+35i+e2fMYYFRYWKjo6+pTreRUW9evXl7+/v3Jzcz2W5+bmqnHjxuVex+l0yul0eiyrW7euN5utVcLDw/mLfB7ieT1/8dyev3huyzrVnopSXh28GRgYqISEBK1cudK9zOVyaeXKlbriiiu8nxAAAJxXvH4r5MEHH9TAgQPVqVMnJSYmasaMGTp8+LAGDx5cHfMBAIAaxOuwuO2227R//349+uij2rdvnzp27Kjly5eXOaAT3nE6nRo3blyZt41Qs/G8nr94bs9fPLdnxmFO97kRAACASuJ3hQAAAGsICwAAYA1hAQAArCEsAACANYQFAACwhrA4B6xZs0b+/v7q3bu3r0eBJYMGDZLD4XCfoqKilJycrE2bNvl6NFiwb98+DR8+XC1atJDT6VRMTIxSUlI8vjwQNcvJr9k6deqoUaNGuu666zR79my5XC5fj1ejEBbngKysLA0fPlyffvqpfvrpJ1+PA0uSk5O1d+9e7d27VytXrlRAQID69Onj67FwhnJycpSQkKBVq1ZpypQp2rx5s5YvX66kpCSlpqb6ejycgdLXbE5OjpYtW6akpCQ98MAD6tOnj44fP+7r8WqMav8lZDi1oqIiLVq0SOvWrdO+ffuUnZ2tv/3tb74eCxY4nU7379Bp3LixRo8era5du2r//v1q0KCBj6dDVf3lL3+Rw+HQ2rVrFRIS4l7etm1b3XfffT6cDGfq5NdskyZN9Ic//EGXX365rrnmGmVnZ2vo0KE+nrBmYI+Fjy1evFjx8fG6+OKLdffdd2v27Nmn/V33qHmKioo0b948tWrVSlFRUb4eB1V08OBBLV++XKmpqR5RUYpfsHj+ufrqq9WhQwe98cYbvh6lxiAsfCwrK0t33323pN92w+Xn5+uTTz7x8VSwYenSpQoNDVVoaKjCwsL0zjvvaNGiRfLz42VXU+3cuVPGGMXHx/t6FJxF8fHxysnJ8fUYNQb/wvnQtm3btHbtWt1xxx2SpICAAN12223Kysry8WSwISkpSRs3btTGjRu1du1a9ezZU7169dLu3bt9PRqqiL2JtZMxRg6Hw9dj1BgcY+FDWVlZOn78uKKjo93LjDFyOp167rnnKvV773HuCgkJUatWrdznX3rpJUVERGjWrFmaNGmSDydDVcXFxcnhcGjr1q2+HgVn0bfffqvY2Fhfj1FjsMfCR44fP66XX35Z//jHP9z/q924caO+/vprRUdHa8GCBb4eEZY5HA75+fnp119/9fUoqKLIyEj17NlTmZmZOnz4cJnLf/nll7M/FKrVqlWrtHnzZvXt29fXo9QY7LHwkaVLl+rQoUMaMmRImT0Tffv2VVZWlv70pz/5aDrYUFxcrH379kmSDh06pOeee05FRUVKSUnx8WQ4E5mZmerSpYsSExP12GOP6ZJLLtHx48e1YsUKzZw5U99++62vR0QVlb5mT5w4odzcXC1fvlwZGRnq06eP7r33Xl+PV2MQFj6SlZWla6+9tty3O/r27aunnnpKmzZt0iWXXOKD6WDD8uXLdeGFF0qSwsLCFB8fr9dee009evTw7WA4Iy1atNCGDRs0efJkPfTQQ9q7d68aNGighIQEzZw509fj4QyUvmYDAgJUr149dejQQc8884wGDhzIQddecBiORgIAAJaQYAAAwBrCAgAAWENYAAAAawgLAABgDWEBAACsISwAAIA1hAUAALCGsAAAANYQFgAAwBrCAgAAWENYAAAAa/4fAPiDqxcjJ/YAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"cat=['A','B','C','D']\n",
"val=[5,7,3,9]\n",
"colors=['red','blue','green','yellow']\n",
"\n",
"plt.bar(cat,val,color=colors)\n",
"plt.title(\"Bar Plot for Categories\")\n",
"plt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python"
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
Expand Down
52 changes: 51 additions & 1 deletion src/3-scatter-plot.ipynb

Large diffs are not rendered by default.

45 changes: 44 additions & 1 deletion src/4-pie-chart.ipynb

Large diffs are not rendered by default.

65 changes: 64 additions & 1 deletion src/5-subplot.ipynb

Large diffs are not rendered by default.

52 changes: 51 additions & 1 deletion src/6-histogram.ipynb

Large diffs are not rendered by default.