Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7,682 changes: 7,682 additions & 0 deletions activities/1.1-basic-jupyter-notebook.html

Large diffs are not rendered by default.

10 changes: 5 additions & 5 deletions activities/1.1-basic-jupyter-notebook.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -39,13 +39,13 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Hello, JupyterLab!\n"
"Hello, Afroz!\n"
]
}
],
"source": [
"# This is a Python code cell\n",
"print('Hello, JupyterLab!')"
"print('Hello, Afroz!')"
]
},
{
Expand All @@ -71,7 +71,7 @@
"2. Add your name below using Markdown syntax:\n",
"\n",
"### Your Name\n",
"John Doe\n",
"Kazi Afroz Alam\n",
"\n",
"3. Press **Shift + Enter** to render the Markdown."
]
Expand Down Expand Up @@ -145,7 +145,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
Expand All @@ -159,7 +159,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.3"
"version": "3.12.3"
}
},
"nbformat": 4,
Expand Down
7 changes: 2 additions & 5 deletions activities/1.2-using-matplotlib.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": null,
"metadata": {},
"outputs": [
{
Expand All @@ -86,19 +86,16 @@
}
],
"source": [
"# Data\n",
"\n",
"categories = ['Category A', 'Category B', 'Category C', 'Category D']\n",
"values = [4, 7, 3, 6]\n",
"\n",
"# Create a bar plot\n",
"plt.bar(categories, values)\n",
"\n",
"# Labeling the axes and the plot\n",
"plt.xlabel('Categories')\n",
"plt.ylabel('Values')\n",
"plt.title('Bar Plot Example')\n",
"\n",
"# Show the plot\n",
"plt.show()"
]
},
Expand Down
42 changes: 37 additions & 5 deletions src/1-line-plot.ipynb

Large diffs are not rendered by default.

42 changes: 39 additions & 3 deletions src/2-bar-plot.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -11,16 +11,52 @@
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAGzCAYAAABzfl4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAiA0lEQVR4nO3de1TUdf7H8deIOiDCqIQXkp+SekTBS2lqsSmYRQZWJ/N4LSS1tlC8rSdtT5lbim5plhqpKXjJa3ZbS8p7u5utt0wrMd0WNU3BVEbNUOD7+6PjnEZQGfzggDwf58yp+fKd77yZGfDJd74zY7MsyxIAAIABVbw9AAAAuHkQFgAAwBjCAgAAGENYAAAAYwgLAABgDGEBAACMISwAAIAxhAUAADCGsAAAAMYQFkA5NXDgQDVu3NjbY7g5e/asBg8erPr168tms2nEiBHeHqncs9lseumll7w9BnDDEBaoNNLT02Wz2dxOdevWVUxMjNasWXPD5oiOjnaboU6dOrrzzjs1f/58FRYWGrmOSZMm6cMPPzSyrcu3m56ermeeeUaLFi3S448/ftX1CwoKlJaWpujoaNWpU0d2u12NGzdWYmKitm/f7vH1f//993rppZeUlZVVyu8AQFmr6u0BgBvtb3/7m8LCwmRZlo4fP6709HQ9+OCD+sc//qH4+PgbMkPDhg2VkpIiScrJydHChQs1aNAg/fDDD5o8efJ1b3/SpEl67LHH9Mgjj1z3tv5ow4YN6tSpk8aPH3/Ndc+fP69HH31UGRkZ6ty5s55//nnVqVNHWVlZWrFihRYsWKBDhw6pYcOGJb7+77//XhMmTFB0dHS525tzJefPn1fVqvyqReXBox2VTvfu3dW+fXvX+UGDBqlevXpaunSpkbAoLCzUhQsX5Ovre8V1HA6HBgwY4Dr/9NNPq3nz5po5c6ZefvllVatW7brnKAvZ2dlq2bJlidYdM2aMMjIy9Prrrxd5ymT8+PF6/fXXy2DC8uGPj4GrPQ6AmxFPhaDSq1Wrlvz8/Ir8Vfnaa6/p7rvvVlBQkPz8/NSuXTu99957RS5vs9k0dOhQvfvuu4qIiJDdbldGRoZHM9SoUUOdOnXSuXPnlJOTc8X1zp07p9GjRys0NFR2u13NmzfXa6+9pj9+SLHNZtO5c+e0YMEC19MtAwcOvOr1Z2dnuwLL19dXbdq00YIFC1xf37Rpk2w2m/73v//pk08+cW33Sk9J/PTTT5o9e7buu+++Yo/D8PHx0V/+8hfX3oqDBw/q2WefVfPmzeXn56egoCD16tXLbfvp6enq1auXJCkmJsY1w6ZNm1zrrFmzRvfcc4/8/f0VEBCguLg4fffdd0Wuf+XKlWrZsqV8fX0VGRmpDz74oNhjWkpye0tXfwwUd4zFkSNH9OSTT6pevXqy2+2KiIjQ/Pnzi8w5Y8YMRUREqEaNGqpdu7bat2+vJUuWFHubA+UFeyxQ6eTm5urEiROyLEvZ2dmaMWOGzp4967YHQZLeeOMNPfTQQ+rfv78uXLigZcuWqVevXlq9erXi4uLc1t2wYYNWrFihoUOH6pZbbinVbvoff/xRPj4+qlWrVrFftyxLDz30kDZu3KhBgwapbdu2+uyzzzRmzBgdOXLEtQdg0aJFGjx4sDp06KCnnnpKktSkSZMrXu/58+cVHR2tAwcOaOjQoQoLC9PKlSs1cOBAnT59WsOHD1eLFi20aNEijRw5Ug0bNtTo0aMlScHBwcVuc82aNcrPz7/mMRiXbNu2TV9++aX69Omjhg0bKisrS6mpqYqOjtb333+vGjVqqHPnzkpOTtabb76p559/Xi1atJAk138XLVqkhIQExcbGasqUKfr111+VmpqqP/3pT/r6669d98knn3yi3r17q1WrVkpJSdGpU6c0aNAg3XrrraW6vS8p6WPg+PHj6tSpkytGgoODtWbNGg0aNEhOp9MVYnPnzlVycrIee+wxDR8+XL/99pt2796t//znP+rXr1+JblfAKyygkkhLS7MkFTnZ7XYrPT29yPq//vqr2/kLFy5YkZGRVteuXd2WS7KqVKlifffddyWao0uXLlZ4eLiVk5Nj5eTkWHv37rWSk5MtSVaPHj1c6yUkJFiNGjVynf/www8tSdYrr7zitr3HHnvMstls1oEDB1zL/P39rYSEhBLNM336dEuStXjxYrfv9a677rJq1qxpOZ1O1/JGjRpZcXFx19zmyJEjLUnW119/XaIZLr+tLcuytmzZYkmyFi5c6Fq2cuVKS5K1ceNGt3XPnDlj1apVyxoyZIjb8mPHjlkOh8NteatWrayGDRtaZ86ccS3btGmTJanUt/fVHgOSrPHjx7vODxo0yGrQoIF14sQJt/X69OljORwO123x8MMPWxEREUW2B5R3PBWCSmfWrFlau3at1q5dq8WLFysmJkaDBw/W+++/77aen5+f6/9PnTql3Nxc3XPPPdq5c2eRbXbp0qXExx5IUmZmpoKDgxUcHKwWLVpoxowZiouLK3Z3+CWffvqpfHx8lJyc7LZ89OjRsiyr1K9s+fTTT1W/fn317dvXtaxatWpKTk7W2bNntXnzZo+36XQ6JUkBAQElWv+Pt/XFixf1yy+/qGnTpqpVq1axt/fl1q5dq9OnT6tv3746ceKE6+Tj46OOHTtq48aNkqSjR49qz549euKJJ1SzZk3X5bt06aJWrVq5bdPT27skjwHLsrRq1Sr16NFDlmW5zRobG6vc3FzX91urVi399NNP2rZt2zW/f6A84akQVDodOnRwO3izb9++uv322zV06FDFx8erevXqkqTVq1frlVde0a5du5SXl+da32azFdlmWFiYRzM0btxYc+fOlc1mk6+vr5o1a6a6dete9TIHDx5USEhIkX+sLz0VcPDgQY9m+ON2mzVrpipV3P/OuJ7tBgYGSpLOnDlTovXPnz+vlJQUpaWl6ciRI27HMOTm5l7z8vv375ckde3a9arzXPpemjZtWmSdpk2bukWMp7d3SR4DOTk5On36tObMmaM5c+YUu052drYk6bnnntO6devUoUMHNW3aVPfff7/69eunqKioa14P4E2EBSq9KlWqKCYmRm+88Yb279+viIgI/fOf/9RDDz2kzp0766233lKDBg1UrVo1paWlFXvw3B//4i4Jf39/devWzdS3UO6Eh4dLkvbs2aO2bdtec/1hw4YpLS1NI0aM0F133SWHwyGbzaY+ffqU6L09Lq2zaNEi1a9fv8jXb8TLPUvyGLg054ABA5SQkFDsOq1bt5b0e8Ds27dPq1evVkZGhlatWqW33npLL774oiZMmGBucMAwwgKQlJ+fL+n3d5aUpFWrVsnX11efffaZ7Ha7a720tDSvzCdJjRo10rp163TmzBm3v6IzMzNdX7+kuL0qV9vu7t27VVhY6LbXorjtllT37t3l4+OjxYsXl+gAzvfee08JCQmaOnWqa9lvv/2m06dPu613pe/r0sGpdevWvWqwXfpeDhw4UORrly/z5PYuqeDgYAUEBKigoKBEYenv76/evXurd+/eunDhgh599FFNnDhR48aN42WsKLc4xgKV3sWLF/X555+revXqrt3cPj4+stlsKigocK2XlZVVJu9mWVIPPvigCgoKNHPmTLflr7/+umw2m7p37+5a5u/vX+Qf5att99ixY1q+fLlrWX5+vmbMmKGaNWuqS5cuHs8aGhqqIUOG6PPPP9eMGTOKfL2wsFBTp07VTz/9JOn329u67CWcM2bMcLv9pd+/L0lFvrfY2FgFBgZq0qRJunjxYpHru/QS3pCQEEVGRmrhwoWuiJSkzZs3a8+ePW6X8eT2LikfHx/17NlTq1at0rfffnvFOSXpl19+cfta9erV1bJlS1mWVez3CJQX7LFApbNmzRrXX53Z2dlasmSJ9u/fr7Fjx7qei4+Li9O0adP0wAMPqF+/fsrOztasWbPUtGlT7d692ytz9+jRQzExMfrrX/+qrKwstWnTRp9//rk++ugjjRgxwu0lpe3atdO6des0bdo0hYSEKCwsTB07dix2u0899ZRmz56tgQMHaseOHWrcuLHee+89/fvf/9b06dNLfADm5aZOnar//ve/Sk5O1vvvv6/4+HjVrl1bhw4d0sqVK5WZmak+ffpIkuLj47Vo0SI5HA61bNlSW7Zs0bp16xQUFOS2zbZt28rHx0dTpkxRbm6u7Ha7unbtqrp16yo1NVWPP/647rjjDvXp00fBwcE6dOiQPvnkE0VFRbkCYdKkSXr44YcVFRWlxMREnTp1SjNnzlRkZKRbbHhye3ti8uTJ2rhxozp27KghQ4aoZcuWOnnypHbu3Kl169bp5MmTkqT7779f9evXV1RUlOrVq6e9e/dq5syZiouLK/V9AtwQXnxFCnBDFfdyU19fX6tt27ZWamqqVVhY6Lb+vHnzrGbNmll2u90KDw+30tLSrPHjx1uX/9hIspKSkko8R5cuXUr0MsLLX25qWb+/rHLkyJFWSEiIVa1aNatZs2bWq6++WmT2zMxMq3Pnzpafn58l6ZovPT1+/LiVmJho3XLLLVb16tWtVq1aWWlpaUXWK+nLTS/Jz8+33nnnHeuee+6xHA6HVa1aNatRo0ZWYmKi20tRT5065br+mjVrWrGxsVZmZqbVqFGjIrPPnTvXuu222ywfH58iLz3duHGjFRsbazkcDsvX19dq0qSJNXDgQGv79u1u21i2bJkVHh5u2e12KzIy0vr444+tnj17WuHh4W7rlfT2vtpjQJe93NSyfr+9k5KSrNDQUKtatWpW/fr1rXvvvdeaM2eOa53Zs2dbnTt3toKCgiy73W41adLEGjNmjJWbm3uNWx3wLptlXbb/EQAqobZt2yo4OFhr16719ihAhcYxFgAqlYsXL7oO1r1k06ZN+uabbxQdHe2doYCbCHssAFQqWVlZ6tatmwYMGKCQkBBlZmbq7bfflsPh0LffflvkuA4AnuHgTQCVSu3atdWuXTu98847ysnJkb+/v+Li4jR58mSiAjCAPRYAAMAYjrEAAADGEBYAAMCYG36MRWFhoY4ePaqAgACP3nYYAAB4j2VZOnPmjEJCQop8aOEf3fCwOHr0qEJDQ2/01QIAAAMOHz6shg0bXvHrNzwsLr0V7eHDh11vnwwAAMo3p9Op0NDQa76l/A0Pi0tPfwQGBhIWAABUMNc6jIGDNwEAgDGEBQAAMIawAAAAxhAWAADAGMICAAAYQ1gAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMIawAAAAxhAWAADAGMICAAAYQ1gAAABjbvjHpgMAKoElV/9obZShfpZXr549FgAAwBjCAgAAGENYAAAAYwgLAABgDGEBAACMISwAAIAxhAUAADCGsAAAAMYQFgAAwBjCAgAAGENYAAAAYwgLAABgDGEBAACMISwAAIAxhAUAADCGsAAAAMYQFgAAwBjCAgAAGENYAAAAYwgLAABgDGEBAACMISwAAIAxhAUAADCGsAAAAMYQFgAAwBjCAgAAGENYAAAAYwgLAABgDGEBAACMISwAAIAxhAUAADCGsAAAAMYQFgAAwBjCAgAAGENYAAAAYzwKi4KCAr3wwgsKCwuTn5+fmjRpopdfflmWZZXVfAAAoAKp6snKU6ZMUWpqqhYsWKCIiAht375diYmJcjgcSk5OLqsZAQBABeFRWHz55Zd6+OGHFRcXJ0lq3Lixli5dqq1bt17xMnl5ecrLy3OddzqdpRwVAACUdx49FXL33Xdr/fr1+uGHHyRJ33zzjf71r3+pe/fuV7xMSkqKHA6H6xQaGnp9EwMAgHLLoz0WY8eOldPpVHh4uHx8fFRQUKCJEyeqf//+V7zMuHHjNGrUKNd5p9NJXAAAcJPyKCxWrFihd999V0uWLFFERIR27dqlESNGKCQkRAkJCcVexm63y263GxkWAACUbx6FxZgxYzR27Fj16dNHktSqVSsdPHhQKSkpVwwLAABQeXh0jMWvv/6qKlXcL+Lj46PCwkKjQwEAgIrJoz0WPXr00MSJE/V///d/ioiI0Ndff61p06bpySefLKv5AABABeJRWMyYMUMvvPCCnn32WWVnZyskJERPP/20XnzxxbKaDwAAVCA26wa/babT6ZTD4VBubq4CAwNv5FUDAG6UJTZvT1B59Subf9ZL+u83nxUCAACMISwAAIAxhAUAADCGsAAAAMYQFgAAwBjCAgAAGENYAAAAYwgLAABgDGEBAACMISwAAIAxhAUAADCGsAAAAMYQFgAAwBjCAgAAGENYAAAAYwgLAABgDGEBAACMISwAAIAxhAUAADCGsAAAAMYQFgAAwBjCAgAAGENYAAAAYwgLAABgDGEBAACMISwAAIAxhAUAADCGsAAAAMYQFgAAwBjCAgAAGENYAAAAYwgLAABgTFVvDwCUhM3m7QkqL8vy9gQAKhL2WAAAAGMICwAAYAxhAQAAjCEsAACAMYQFAAAwhrAAAADGEBYAAMAYwgIAABhDWAAAAGMICwAAYAxhAQAAjCEsAACAMYQFAAAwhrAAAADGEBYAAMAYwgIAABhDWAAAAGMICwAAYAxhAQAAjCEsAACAMYQFAAAwhrAAAADGEBYAAMAYwgIAABhDWAAAAGMICwAAYAxhAQAAjCEsAACAMYQFAAAwhrAAAADGEBYAAMAYwgIAABhDWAAAAGMICwAAYIzHYXHkyBENGDBAQUFB8vPzU6tWrbR9+/aymA0AAFQwVT1Z+dSpU4qKilJMTIzWrFmj4OBg7d+/X7Vr1y6r+QAAQAXiUVhMmTJFoaGhSktLcy0LCwszPhQAAKiYPHoq5OOPP1b79u3Vq1cv1a1bV7fffrvmzp171cvk5eXJ6XS6nQAAwM3Jo7D48ccflZqaqmbNmumzzz7TM888o+TkZC1YsOCKl0lJSZHD4XCdQkNDr3toAABQPtksy7JKunL16tXVvn17ffnll65lycnJ2rZtm7Zs2VLsZfLy8pSXl+c673Q6FRoaqtzcXAUGBl7H6KhMbDZvT1B5lfw3BPAHS/ih9Zp+ZfND63Q65XA4rvnvt0d7LBo0aKCWLVu6LWvRooUOHTp0xcvY7XYFBga6nQAAwM3Jo7CIiorSvn373Jb98MMPatSokdGhAABAxeRRWIwcOVJfffWVJk2apAMHDmjJkiWaM2eOkpKSymo+AABQgXgUFnfeeac++OADLV26VJGRkXr55Zc1ffp09e/fv6zmAwAAFYhH72MhSfHx8YqPjy+LWQAAQAXHZ4UAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMIawAAAAxhAWAADAGMICAAAYQ1gAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMIawAAAAxhAWAADAGMICAAAYQ1gAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMIawAAAAxhAWAADAGMICAAAYQ1gAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMIawAAAAxhAWAADAGMICAAAYU9XbAxhls3l7gsrLsrw9AQCgHGCPBQAAMIawAAAAxhAWAADAGMICAAAYQ1gAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMIawAAAAxhAWAADAGMICAAAYQ1gAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMIawAAAAxhAWAADAGMICAAAYQ1gAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMIawAAAAxhAWAADAGMICAAAYQ1gAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMIawAAAAxlxXWEyePFk2m00jRowwNA4AAKjISh0W27Zt0+zZs9W6dWuT8wAAgAqsVGFx9uxZ9e/fX3PnzlXt2rVNzwQAACqoUoVFUlKS4uLi1K1bt2uum5eXJ6fT6XYCAAA3p6qeXmDZsmXauXOntm3bVqL1U1JSNGHCBI8HAwAAFY9HeywOHz6s4cOH691335Wvr2+JLjNu3Djl5ua6TocPHy7VoAAAoPzzaI/Fjh07lJ2drTvuuMO1rKCgQF988YVmzpypvLw8+fj4uF3GbrfLbrebmRYAAJRrHoXFvffeqz179rgtS0xMVHh4uJ577rkiUQEAACoXj8IiICBAkZGRbsv8/f0VFBRUZDkAAKh8eOdNAABgjMevCrncpk2bDIwBAABuBuyxAAAAxhAWAADAGMICAAAYQ1gAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMIawAAAAxhAWAADAGMICAAAYQ1gAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMIawAAAAxhAWAADAGMICAAAYQ1gAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMIawAAAAxhAWAADAGMICAAAYQ1gAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMKaqtwcAUHnZJti8PUKlZY23vD0CblLssQAAAMYQFgAAwBjCAgAAGENYAAAAYwgLAABgDGEBAACMISwAAIAxhAUAADCGsAAAAMYQFgAAwBjCAgAAGENYAAAAYwgLAABgDGEBAACMISwAAIAxhAUAADCGsAAAAMYQFgAAwBjCAgAAGENYAAAAYwgLAABgDGEBAACMISwAAIAxhAUAADCGsAAAAMYQFgAAwBjCAgAAGENYAAAAYwgLAABgDGEBAACMISwAAIAxhAUAADCGsAAAAMYQFgAAwBiPwiIlJUV33nmnAgICVLduXT3yyCPat29fWc0GAAAqGI/CYvPmzUpKStJXX32ltWvX6uLFi7r//vt17ty5spoPAABUIFU9WTkjI8PtfHp6uurWrasdO3aoc+fORgcDAAAVj0dhcbnc3FxJUp06da64Tl5envLy8lznnU7n9VwlAAAox0p98GZhYaFGjBihqKgoRUZGXnG9lJQUORwO1yk0NLS0VwkAAMq5UodFUlKSvv32Wy1btuyq640bN065ubmu0+HDh0t7lQAAoJwr1VMhQ4cO1erVq/XFF1+oYcOGV13XbrfLbreXajgAAFCxeBQWlmVp2LBh+uCDD7Rp0yaFhYWV1VwAAKAC8igskpKStGTJEn300UcKCAjQsWPHJEkOh0N+fn5lMiAAAKg4PDrGIjU1Vbm5uYqOjlaDBg1cp+XLl5fVfAAAoALx+KkQAACAK+GzQgAAgDGEBQAAMIawAAAAxhAWAADAGMICAAAYQ1gAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMIawAAAAxhAWAADAGMICAAAYQ1gAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMIawAAAAxhAWAADAGMICAAAYQ1gAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMIawAAAAxhAWAADAGMICAAAYQ1gAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMIawAAAAxhAWAADAGMICAAAYQ1gAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMIawAAAAxhAWAADAGMICAAAYQ1gAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMIawAAAAxhAWAADAGMICAAAYQ1gAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMIawAAAAxhAWAADAGMICAAAYQ1gAAABjCAsAAGAMYQEAAIwhLAAAgDGEBQAAMIawAAAAxpQqLGbNmqXGjRvL19dXHTt21NatW03PBQAAKiCPw2L58uUaNWqUxo8fr507d6pNmzaKjY1VdnZ2WcwHAAAqEI/DYtq0aRoyZIgSExPVsmVLvf3226pRo4bmz59fFvMBAIAKpKonK1+4cEE7duzQuHHjXMuqVKmibt26acuWLcVeJi8vT3l5ea7zubm5kiSn01maeVFecX/etMr0rv2tDLeNqyrz38G/lu3mcRVldN9eesxYlnXV9TwKixMnTqigoED16tVzW16vXj1lZmYWe5mUlBRNmDChyPLQ0FBPrhrlncPh7QlQRrhrb06OydyxN60hZXvfnjlzRo6r/GLwKCxKY9y4cRo1apTrfGFhoU6ePKmgoCDZbLayvvoKw+l0KjQ0VIcPH1ZgYKC3x4Eh3K83L+7bmxf3bfEsy9KZM2cUEhJy1fU8CotbbrlFPj4+On78uNvy48ePq379+sVexm63y263uy2rVauWJ1dbqQQGBvJAvglxv968uG9vXty3RV1tT8UlHh28Wb16dbVr107r1693LSssLNT69et11113eT4hAAC4qXj8VMioUaOUkJCg9u3bq0OHDpo+fbrOnTunxMTEspgPAABUIB6HRe/evZWTk6MXX3xRx44dU9u2bZWRkVHkgE54xm63a/z48UWeNkLFxv168+K+vXlx314fm3Wt140AAACUEJ8VAgAAjCEsAACAMYQFAAAwhrAAAADGEBYAAMAYwqIc2LJli3x8fBQXF+ftUWDIwIEDZbPZXKegoCA98MAD2r17t7dHgwHHjh3TsGHDdNttt8lutys0NFQ9evRwe/NAVCx//JmtVq2a6tWrp/vuu0/z589XYWGht8erUAiLcmDevHkaNmyYvvjiCx09etTb48CQBx54QD///LN+/vlnrV+/XlWrVlV8fLy3x8J1ysrKUrt27bRhwwa9+uqr2rNnjzIyMhQTE6OkpCRvj4frcOlnNisrS2vWrFFMTIyGDx+u+Ph45efne3u8CqPMP4QMV3f27FktX75c27dv17Fjx5Senq7nn3/e22PBALvd7voMnfr162vs2LG65557lJOTo+DgYC9Ph9J69tlnZbPZtHXrVvn7+7uWR0RE6Mknn/TiZLhef/yZvfXWW3XHHXeoU6dOuvfee5Wenq7Bgwd7ecKKgT0WXrZixQqFh4erefPmGjBggObPn3/Nz7pHxXP27FktXrxYTZs2VVBQkLfHQSmdPHlSGRkZSkpKcouKS/iAxZtP165d1aZNG73//vveHqXCICy8bN68eRowYICk33fD5ebmavPmzV6eCiasXr1aNWvWVM2aNRUQEKCPP/5Yy5cvV5Uq/NhVVAcOHJBlWQoPD/f2KLiBwsPDlZWV5e0xKgx+w3nRvn37tHXrVvXt21eSVLVqVfXu3Vvz5s3z8mQwISYmRrt27dKuXbu0detWxcbGqnv37jp48KC3R0MpsTexcrIsSzabzdtjVBgcY+FF8+bNU35+vkJCQlzLLMuS3W7XzJkzS/S59yi//P391bRpU9f5d955Rw6HQ3PnztUrr7zixclQWs2aNZPNZlNmZqa3R8ENtHfvXoWFhXl7jAqDPRZekp+fr4ULF2rq1Kmuv2p37dqlb775RiEhIVq6dKm3R4RhNptNVapU0fnz5709CkqpTp06io2N1axZs3Tu3LkiXz99+vSNHwplasOGDdqzZ4969uzp7VEqDPZYeMnq1at16tQpDRo0qMieiZ49e2revHn685//7KXpYEJeXp6OHTsmSTp16pRmzpyps2fPqkePHl6eDNdj1qxZioqKUocOHfS3v/1NrVu3Vn5+vtauXavU1FTt3bvX2yOilC79zBYUFOj48ePKyMhQSkqK4uPj9cQTT3h7vAqDsPCSefPmqVu3bsU+3dGzZ0/9/e9/1+7du9W6dWsvTAcTMjIy1KBBA0lSQECAwsPDtXLlSkVHR3t3MFyX2267TTt37tTEiRM1evRo/fzzzwoODla7du2Umprq7fFwHS79zFatWlW1a9dWmzZt9OabbyohIYGDrj1gszgaCQAAGEKCAQAAYwgLAABgDGEBAACMISwAAIAxhAUAADCGsAAAAMYQFgAAwBjCAgAAGENYAAAAYwgLAABgDGEBAACM+X8L+Tp8k8VX9QAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# TASK: Create a bar plot with the following data: categories = ['A', 'B', 'C', 'D'] and values = [5, 7, 3, 9].\n",
"# Use different colors for each bar and add a title to the plot."
"# Use different colors for each bar and add a title to the plot.\n",
"import matplotlib.pyplot as plt\n",
"\n",
"categories = ['A', 'B', 'C', 'D']\n",
"values = [5, 7, 3, 9]\n",
"colors = ['red', 'blue', 'green', 'orange'] \n",
"\n",
"plt.bar(categories, values, color=colors)\n",
"\n",
"plt.title('Bar Plot of Categories')\n",
"\n",
"plt.show()\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python"
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
Expand Down
49 changes: 46 additions & 3 deletions src/3-scatter-plot.ipynb

Large diffs are not rendered by default.

46 changes: 42 additions & 4 deletions src/4-pie-chart.ipynb

Large diffs are not rendered by default.

68 changes: 64 additions & 4 deletions src/5-subplot.ipynb

Large diffs are not rendered by default.

36 changes: 32 additions & 4 deletions src/6-histogram.ipynb

Large diffs are not rendered by default.