A pure Haskell implementation of RIPEMD-160 and HMAC-RIPEMD160 on strict and lazy ByteStrings.
A sample GHCi session:
> :set -XOverloadedStrings
>
> -- import qualified
> import qualified Crypto.Hash.RIPEMD160 as RIPEMD160
>
> -- 'hash' and 'hmac' operate on strict bytestrings
>
> let hash_s = RIPEMD160.hash "strict bytestring input"
> let hmac_s = RIPEMD160.hmac "strict secret" "strict bytestring input"
>
> -- 'hash_lazy' and 'hmac_lazy' operate on lazy bytestrings
> -- but note that the key for HMAC is always strict
>
> let hash_l = RIPEMD160.hash_lazy "lazy bytestring input"
> let hmac_l = RIPEMD160.hmac_lazy "strict secret" "lazy bytestring input"
>
> -- results are always unformatted 160-bit (20-byte) strict bytestrings
>
> import qualified Data.ByteString as BS
>
> BS.take 10 hash_s
"=\211\211\197]\NULJ\223n\223"
> BS.take 10 hmac_l
"\154\248\145[\196\ETX\f\ESC\NULs"
>
> -- you can use third-party libraries for rendering if needed
> -- e.g., using ppad-base16:
>
> import qualified Data.ByteString.Base16 as B16
>
> B16.encode hash_s
"3dd3d3c55d004adf6edf9e11cb01f9ac9c56441f"
> B16.encode hmac_l
"9af8915bc4030c1b007323c8531b3129d82f50bd"
Haddocks (API documentation, etc.) are hosted at docs.ppad.tech/ripemd160.
The aim is best-in-class performance for pure, highly-auditable Haskell code.
Current benchmark figures on my M4 Silicon MacBook Air look like (use
cabal bench to run the benchmark suite):
benchmarking ppad-ripemd160/RIPEMD160 (32B input)/hash
time 244.2 ns (244.0 ns .. 244.4 ns)
1.000 R² (1.000 R² .. 1.000 R²)
mean 244.5 ns (244.4 ns .. 244.7 ns)
std dev 522.8 ps (355.8 ps .. 868.0 ps)
benchmarking ppad-ripemd160/HMAC-RIPEMD160 (32B input)/hmac
time 836.1 ns (835.3 ns .. 837.0 ns)
1.000 R² (1.000 R² .. 1.000 R²)
mean 836.6 ns (835.6 ns .. 837.4 ns)
std dev 3.105 ns (2.474 ns .. 4.117 ns)
Compile with the 'llvm' flag for maximum performance.
This library aims at the maximum security achievable in a garbage-collected language under an optimizing compiler such as GHC, in which strict constant-timeness can be challenging to achieve.
The RIPEMD-160 functions pass the vectors present in the official spec, and the HMAC-RIPEMD160 functions pass all vectors found contained in RFC2286.
If you discover any vulnerabilities, please disclose them via security@ppad.tech.
You'll require Nix with flake support enabled. Enter a development shell with:
$ nix develop
Then do e.g.:
$ cabal repl ppad-ripemd160
to get a REPL for the main library.