Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ repos:
hooks:
- id: trailing-whitespace
- id: end-of-file-fixer
exclude: "^tests/unit/core/compile/sqlglot/snapshots"
exclude: "^tests/unit/core/compile/sqlglot/.*snapshots"
- id: check-yaml
- repo: https://github.com/pycqa/isort
rev: 5.12.0
Expand Down
38 changes: 30 additions & 8 deletions bigframes/core/compile/sqlglot/aggregations/unary_compiler.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,7 @@

import typing

import pandas as pd
import sqlglot.expressions as sge

from bigframes import dtypes
Expand Down Expand Up @@ -46,18 +47,22 @@ def _(
return apply_window_if_present(sge.func("COUNT", column.expr), window)


@UNARY_OP_REGISTRATION.register(agg_ops.SumOp)
@UNARY_OP_REGISTRATION.register(agg_ops.MaxOp)
def _(
op: agg_ops.SumOp,
op: agg_ops.MaxOp,
column: typed_expr.TypedExpr,
window: typing.Optional[window_spec.WindowSpec] = None,
) -> sge.Expression:
expr = column.expr
if column.dtype == dtypes.BOOL_DTYPE:
expr = sge.Cast(this=column.expr, to="INT64")
# Will be null if all inputs are null. Pandas defaults to zero sum though.
expr = apply_window_if_present(sge.func("SUM", expr), window)
return sge.func("IFNULL", expr, ir._literal(0, column.dtype))
return apply_window_if_present(sge.func("MAX", column.expr), window)


@UNARY_OP_REGISTRATION.register(agg_ops.MinOp)
def _(
op: agg_ops.MinOp,
column: typed_expr.TypedExpr,
window: typing.Optional[window_spec.WindowSpec] = None,
) -> sge.Expression:
return apply_window_if_present(sge.func("MIN", column.expr), window)


@UNARY_OP_REGISTRATION.register(agg_ops.SizeUnaryOp)
Expand All @@ -67,3 +72,20 @@ def _(
window: typing.Optional[window_spec.WindowSpec] = None,
) -> sge.Expression:
return apply_window_if_present(sge.func("COUNT", sge.convert(1)), window)


@UNARY_OP_REGISTRATION.register(agg_ops.SumOp)
def _(
op: agg_ops.SumOp,
column: typed_expr.TypedExpr,
window: typing.Optional[window_spec.WindowSpec] = None,
) -> sge.Expression:
expr = column.expr
if column.dtype == dtypes.BOOL_DTYPE:
expr = sge.Cast(this=column.expr, to="INT64")

expr = apply_window_if_present(sge.func("SUM", expr), window)

# Will be null if all inputs are null. Pandas defaults to zero sum though.
zero = pd.to_timedelta(0) if column.dtype == dtypes.TIMEDELTA_DTYPE else 0
return sge.func("IFNULL", expr, ir._literal(zero, column.dtype))
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
WITH `bfcte_0` AS (
SELECT
`int64_col` AS `bfcol_0`
FROM `bigframes-dev`.`sqlglot_test`.`scalar_types`
), `bfcte_1` AS (
SELECT
COUNT(`bfcol_0`) AS `bfcol_1`
FROM `bfcte_0`
)
SELECT
`bfcol_1` AS `int64_col`
FROM `bfcte_1`
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
WITH `bfcte_0` AS (
SELECT
`int64_col` AS `bfcol_0`
FROM `bigframes-dev`.`sqlglot_test`.`scalar_types`
), `bfcte_1` AS (
SELECT
MAX(`bfcol_0`) AS `bfcol_1`
FROM `bfcte_0`
)
SELECT
`bfcol_1` AS `int64_col`
FROM `bfcte_1`
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
WITH `bfcte_0` AS (
SELECT
`int64_col` AS `bfcol_0`
FROM `bigframes-dev`.`sqlglot_test`.`scalar_types`
), `bfcte_1` AS (
SELECT
MIN(`bfcol_0`) AS `bfcol_1`
FROM `bfcte_0`
)
SELECT
`bfcol_1` AS `int64_col`
FROM `bfcte_1`
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
WITH `bfcte_0` AS (
SELECT
`string_col` AS `bfcol_0`
`float64_col` AS `bfcol_0`
FROM `bigframes-dev`.`sqlglot_test`.`scalar_types`
), `bfcte_1` AS (
SELECT
COUNT(1) AS `bfcol_1`
FROM `bfcte_0`
)
SELECT
`bfcol_1` AS `string_col_agg`
`bfcol_1` AS `float64_col`
FROM `bfcte_1`
Original file line number Diff line number Diff line change
@@ -1,12 +1,15 @@
WITH `bfcte_0` AS (
SELECT
`int64_col` AS `bfcol_0`
`bool_col` AS `bfcol_0`,
`int64_col` AS `bfcol_1`
FROM `bigframes-dev`.`sqlglot_test`.`scalar_types`
), `bfcte_1` AS (
SELECT
COALESCE(SUM(`bfcol_0`), 0) AS `bfcol_1`
COALESCE(SUM(`bfcol_1`), 0) AS `bfcol_4`,
COALESCE(SUM(CAST(`bfcol_0` AS INT64)), 0) AS `bfcol_5`
FROM `bfcte_0`
)
SELECT
`bfcol_1` AS `int64_col_agg`
`bfcol_4` AS `int64_col`,
`bfcol_5` AS `bool_col`
FROM `bfcte_1`
Original file line number Diff line number Diff line change
Expand Up @@ -12,40 +12,67 @@
# See the License for the specific language governing permissions and
# limitations under the License.

import typing

import pytest

from bigframes.core import agg_expressions, array_value, expression, identifiers, nodes
from bigframes.core import agg_expressions as agg_exprs
from bigframes.core import array_value, identifiers, nodes
from bigframes.operations import aggregations as agg_ops
import bigframes.pandas as bpd

pytest.importorskip("pytest_snapshot")


def _apply_unary_op(obj: bpd.DataFrame, op: agg_ops.UnaryWindowOp, arg: str) -> str:
agg_node = nodes.AggregateNode(
obj._block.expr.node,
aggregations=(
(
agg_expressions.UnaryAggregation(op, expression.deref(arg)),
identifiers.ColumnId(arg + "_agg"),
),
),
)
def _apply_unary_agg_ops(
obj: bpd.DataFrame,
ops_list: typing.Sequence[agg_exprs.UnaryAggregation],
new_names: typing.Sequence[str],
) -> str:
aggs = [(op, identifiers.ColumnId(name)) for op, name in zip(ops_list, new_names)]

agg_node = nodes.AggregateNode(obj._block.expr.node, aggregations=tuple(aggs))
result = array_value.ArrayValue(agg_node)

sql = result.session._executor.to_sql(result, enable_cache=False)
return sql


def test_size(scalar_types_df: bpd.DataFrame, snapshot):
bf_df = scalar_types_df[["string_col"]]
sql = _apply_unary_op(bf_df, agg_ops.SizeUnaryOp(), "string_col")
def test_count(scalar_types_df: bpd.DataFrame, snapshot):
col_name = "int64_col"
bf_df = scalar_types_df[[col_name]]
agg_expr = agg_ops.CountOp().as_expr(col_name)
sql = _apply_unary_agg_ops(bf_df, [agg_expr], [col_name])

snapshot.assert_match(sql, "out.sql")


def test_max(scalar_types_df: bpd.DataFrame, snapshot):
col_name = "int64_col"
bf_df = scalar_types_df[[col_name]]
agg_expr = agg_ops.MaxOp().as_expr(col_name)
sql = _apply_unary_agg_ops(bf_df, [agg_expr], [col_name])

snapshot.assert_match(sql, "out.sql")


def test_min(scalar_types_df: bpd.DataFrame, snapshot):
col_name = "int64_col"
bf_df = scalar_types_df[[col_name]]
agg_expr = agg_ops.MinOp().as_expr(col_name)
sql = _apply_unary_agg_ops(bf_df, [agg_expr], [col_name])

snapshot.assert_match(sql, "out.sql")


def test_sum(scalar_types_df: bpd.DataFrame, snapshot):
bf_df = scalar_types_df[["int64_col"]]
sql = _apply_unary_op(bf_df, agg_ops.SumOp(), "int64_col")
bf_df = scalar_types_df[["int64_col", "bool_col"]]
agg_ops_map = {
"int64_col": agg_ops.SumOp().as_expr("int64_col"),
"bool_col": agg_ops.SumOp().as_expr("bool_col"),
}
sql = _apply_unary_agg_ops(
bf_df, list(agg_ops_map.values()), list(agg_ops_map.keys())
)

snapshot.assert_match(sql, "out.sql")